本文是文献[1]的续篇。文献[1]以一维有限元为例,揭示了其误差主要来自于各个单元的“固端解”。其后,基于这一思想的超收敛计算的单元能量投影(element energy projection,EEP)法得以创立和发展,并有效地用于自适应有限元求解。近期的...本文是文献[1]的续篇。文献[1]以一维有限元为例,揭示了其误差主要来自于各个单元的“固端解”。其后,基于这一思想的超收敛计算的单元能量投影(element energy projection,EEP)法得以创立和发展,并有效地用于自适应有限元求解。近期的反思发现,前文的思想精华还有发扬空间:既然单元“固端解”是有限元误差的主要来源,就可以用EEP公式简便地事先求出来,从而可以不经有限元计算而一举得到所需的网格划分。本文简要介绍这一最新方法的思路和机理,并给出初步的数值结果。展开更多
该文基于有限元超收敛计算的单元能量投影(Element Energy Projection,简称EEP)法,尝试将一维有限元中新近提出的先验定量误差估计的“固端法”拓展到二维有限元分析,以Poisson方程为例,用EEP公式预先估算出各单元的误差,可以不经有限...该文基于有限元超收敛计算的单元能量投影(Element Energy Projection,简称EEP)法,尝试将一维有限元中新近提出的先验定量误差估计的“固端法”拓展到二维有限元分析,以Poisson方程为例,用EEP公式预先估算出各单元的误差,可以不经有限元求解计算而直接给出满足精度要求的网格划分。该文给出的初步数值算例验证了该法的有效性。展开更多
文摘本文是文献[1]的续篇。文献[1]以一维有限元为例,揭示了其误差主要来自于各个单元的“固端解”。其后,基于这一思想的超收敛计算的单元能量投影(element energy projection,EEP)法得以创立和发展,并有效地用于自适应有限元求解。近期的反思发现,前文的思想精华还有发扬空间:既然单元“固端解”是有限元误差的主要来源,就可以用EEP公式简便地事先求出来,从而可以不经有限元计算而一举得到所需的网格划分。本文简要介绍这一最新方法的思路和机理,并给出初步的数值结果。
文摘该文基于有限元超收敛计算的单元能量投影(Element Energy Projection,简称EEP)法,尝试将一维有限元中新近提出的先验定量误差估计的“固端法”拓展到二维有限元分析,以Poisson方程为例,用EEP公式预先估算出各单元的误差,可以不经有限元求解计算而直接给出满足精度要求的网格划分。该文给出的初步数值算例验证了该法的有效性。