AIM:To investigate whether umbilical cord human mesenchymal stem cell(UC-MSC)was able to differentiate into neural stem cell and neuron.·METHODS:The umbilical cords were o btained from pregnant women with the...AIM:To investigate whether umbilical cord human mesenchymal stem cell(UC-MSC)was able to differentiate into neural stem cell and neuron.·METHODS:The umbilical cords were o btained from pregnant women with their written consent and the approval of the Clinic Ethnics Committee.UC-MSC were isolated by adherent culture in the medium contains 20%fetal bovine serum(FBS),then they were maintained in the medium contain 10%FBS and induced to neural cells in neural differentiation medium.We investigated whether UC-MSC was able to differentiate into neural stem cell and neuron by using flow cytometry,reverse transcriptase-polymerase chain reaction(RT-PCR)and immunofluorescence(IF)analyzes.·R ESULTS:A substantial number of UC-MSC was harvested using the tissue explants adherent method at about 2wk.Flow cytometric study revealed that these cells expressed common markers of MSCs,such as CD105(SH2),CD73(SH3)and CD90.After induction of differentiation of neural stem cells,the cells began to form clusters;RT-PCR and IF showed that the neuron specific enolase(NSE)and neurogenic differentiation 1-positive cells reached 87.3%±14.7%and 72.6%±11.8%,respectively.Cells showed neuronal cell differentiation after induced,including neuron-like protrusions,plump cell body,obviously and stronger refraction.RT-PCR and IF analysis showed that microtubule-associated protein 2(MAP2)and nuclear factor-M-positive cells reached 43.1%±10.3%and 69.4%±19.5%,respectively.·CONCLUSION:Human umbilical cord derived MSCs can be cultured and proliferated and differentiate into neural stem cells,which may be a valuable source for cell therapy of neurodegenerative eye diseases.展开更多
Mesenchymal stem cells (MSCs) are characterized by their self-renewing capacity and differentiation potential into multiple tissues. Thus, management of the differentiation capacities of MSCs is important for MSC-ba...Mesenchymal stem cells (MSCs) are characterized by their self-renewing capacity and differentiation potential into multiple tissues. Thus, management of the differentiation capacities of MSCs is important for MSC-based regenerative medicine, such as craniofacial bone regeneration, and in new treatments for metabolic bone diseases, such as osteoporosis. In recent years, histone modification has been a growing topic in the field of MSC lineage specification, in which the Su(var)3-9, enhancer-of-zeste, trithorax (SET) domain-containing family and the Jumonji C (JmjC) domain-containing family represent the major histone lysine methyltransferases (KMTs) and histone lysine demethylases (KDMs), respectively. In this review, we summarize the current understanding of the epigenetic mechanisms by which SET domain-containine KMTs and JmiC domain-containinlz KDMs balance the osteogenic and adipogenic differentiation of MSCs.展开更多
AIM:To investigate whether the human olfactory mucosa mesenchymal stem cells(OM-MSCs)can differentiate into photoreceptor cells in vitro.METHODS:Through the olfactory mucosa adherent method,olfactory mucosa was is...AIM:To investigate whether the human olfactory mucosa mesenchymal stem cells(OM-MSCs)can differentiate into photoreceptor cells in vitro.METHODS:Through the olfactory mucosa adherent method,olfactory mucosa was isolated,cultured and identified in vitro among mesenchymal stem cells.The cell surface markers were analyzed by flow cytometry,induced to differentiate into retinal photoreceptor cells in vitro,and the expression of rhodopsin was observed and identified by Immunofluorescence and Western blot methods.RESULTS:OM-MSCs from human were spindle cellbased,and showing radial colony arrangement.OM-MSCs were negative for CD34,CD45 and CD105,but positive for CD73 and CD90.Following induction,a strong positive reaction was produced by photoreceptor specific marker rhodopsin in the cells.CONSLUSION:This novel finding demonstrates that OM-MSCs can be cultured and expanded in vitro.They possess biological characteristics of mesenchymal stem cells,and have the ability to be induced into retinal cells.展开更多
In the present study, we transplanted adipose-derived mesenchymal stem cells into the hippo-campi of APP/PS1 transgenic Alzheimer's disease model mice. Immunofluorescence staining revealed that the number of newly ge...In the present study, we transplanted adipose-derived mesenchymal stem cells into the hippo-campi of APP/PS1 transgenic Alzheimer's disease model mice. Immunofluorescence staining revealed that the number of newly generated (BrdU+) cells in the subgranular zone of the dentate gyrus in the hippocampus was signiifcantly higher in Alzheimer's disease mice after adipose-de-rived mesenchymal stem cell transplantation, and there was also a significant increase in the number of BrdU+/DCX+neuroblasts in these animals. Adipose-derived mesenchymal stem cell transplantation enhanced neurogenic activity in the subventricular zone as well. Furthermore, adipose-derived mesenchymal stem cell transplantation reduced oxidative stress and alleviated cognitive impairment in the mice. Based on these ifndings, we propose that adipose-derived mes-enchymal stem cell transplantation enhances endogenous neurogenesis in both the subgranular and subventricular zones in APP/PS1 transgenic Alzheimer's disease mice, thereby facilitating functional recovery.展开更多
基金Supported by Tianjin Science and Technology Project of China(13ZCZDSY01500)
文摘AIM:To investigate whether umbilical cord human mesenchymal stem cell(UC-MSC)was able to differentiate into neural stem cell and neuron.·METHODS:The umbilical cords were o btained from pregnant women with their written consent and the approval of the Clinic Ethnics Committee.UC-MSC were isolated by adherent culture in the medium contains 20%fetal bovine serum(FBS),then they were maintained in the medium contain 10%FBS and induced to neural cells in neural differentiation medium.We investigated whether UC-MSC was able to differentiate into neural stem cell and neuron by using flow cytometry,reverse transcriptase-polymerase chain reaction(RT-PCR)and immunofluorescence(IF)analyzes.·R ESULTS:A substantial number of UC-MSC was harvested using the tissue explants adherent method at about 2wk.Flow cytometric study revealed that these cells expressed common markers of MSCs,such as CD105(SH2),CD73(SH3)and CD90.After induction of differentiation of neural stem cells,the cells began to form clusters;RT-PCR and IF showed that the neuron specific enolase(NSE)and neurogenic differentiation 1-positive cells reached 87.3%±14.7%and 72.6%±11.8%,respectively.Cells showed neuronal cell differentiation after induced,including neuron-like protrusions,plump cell body,obviously and stronger refraction.RT-PCR and IF analysis showed that microtubule-associated protein 2(MAP2)and nuclear factor-M-positive cells reached 43.1%±10.3%and 69.4%±19.5%,respectively.·CONCLUSION:Human umbilical cord derived MSCs can be cultured and proliferated and differentiate into neural stem cells,which may be a valuable source for cell therapy of neurodegenerative eye diseases.
基金supported by the National Institute of Dental and Craniofacial Research grants, K08DE024603-02, DE019412, and DE01651a grant from 111 Project of MOE, Chinasupported by Open Fund of State Key Laboratory of Oral Diseases, Sichuan University
文摘Mesenchymal stem cells (MSCs) are characterized by their self-renewing capacity and differentiation potential into multiple tissues. Thus, management of the differentiation capacities of MSCs is important for MSC-based regenerative medicine, such as craniofacial bone regeneration, and in new treatments for metabolic bone diseases, such as osteoporosis. In recent years, histone modification has been a growing topic in the field of MSC lineage specification, in which the Su(var)3-9, enhancer-of-zeste, trithorax (SET) domain-containing family and the Jumonji C (JmjC) domain-containing family represent the major histone lysine methyltransferases (KMTs) and histone lysine demethylases (KDMs), respectively. In this review, we summarize the current understanding of the epigenetic mechanisms by which SET domain-containine KMTs and JmiC domain-containinlz KDMs balance the osteogenic and adipogenic differentiation of MSCs.
基金Supported by Guangxi Natural Science Foundation(No.2014GXNSFAA118273)University Scientific Research Projects in Education Department of Guangxi Zhuang Autonomous Region(No.YB2014072)
文摘AIM:To investigate whether the human olfactory mucosa mesenchymal stem cells(OM-MSCs)can differentiate into photoreceptor cells in vitro.METHODS:Through the olfactory mucosa adherent method,olfactory mucosa was isolated,cultured and identified in vitro among mesenchymal stem cells.The cell surface markers were analyzed by flow cytometry,induced to differentiate into retinal photoreceptor cells in vitro,and the expression of rhodopsin was observed and identified by Immunofluorescence and Western blot methods.RESULTS:OM-MSCs from human were spindle cellbased,and showing radial colony arrangement.OM-MSCs were negative for CD34,CD45 and CD105,but positive for CD73 and CD90.Following induction,a strong positive reaction was produced by photoreceptor specific marker rhodopsin in the cells.CONSLUSION:This novel finding demonstrates that OM-MSCs can be cultured and expanded in vitro.They possess biological characteristics of mesenchymal stem cells,and have the ability to be induced into retinal cells.
基金supported by the National High-Tech Research and Development Program of China(863 Program),No.2012AA020905Tsinghua-Yue-Yuen Medical Sciences Fund,No.20240000514
文摘In the present study, we transplanted adipose-derived mesenchymal stem cells into the hippo-campi of APP/PS1 transgenic Alzheimer's disease model mice. Immunofluorescence staining revealed that the number of newly generated (BrdU+) cells in the subgranular zone of the dentate gyrus in the hippocampus was signiifcantly higher in Alzheimer's disease mice after adipose-de-rived mesenchymal stem cell transplantation, and there was also a significant increase in the number of BrdU+/DCX+neuroblasts in these animals. Adipose-derived mesenchymal stem cell transplantation enhanced neurogenic activity in the subventricular zone as well. Furthermore, adipose-derived mesenchymal stem cell transplantation reduced oxidative stress and alleviated cognitive impairment in the mice. Based on these ifndings, we propose that adipose-derived mes-enchymal stem cell transplantation enhances endogenous neurogenesis in both the subgranular and subventricular zones in APP/PS1 transgenic Alzheimer's disease mice, thereby facilitating functional recovery.