This paper highlights the memristor bridge-based lowpass filter (LPF) and improved image processing algorithms along with a novel adaptive Gaussian filter for denoising image and a new Gaussian pyramid for scale invar...This paper highlights the memristor bridge-based lowpass filter (LPF) and improved image processing algorithms along with a novel adaptive Gaussian filter for denoising image and a new Gaussian pyramid for scale invariant feature transform (SIFT). First, a novel kind of LPF based on the memristor bridge is designed, whose cut-off frequency and other traits are demonstrated to change with different time and memristance. In light of the changeable parameter of the memristor bridge-based LPF, a new adaptive Gaussian filter and an improved SIFT algorithm are presented. Finally, experiment results show that the peak signalto- noise ratio (PSNR) of our denoising is bettered more than 2.77 dB compared to the corresponding of the traditional Gaussian filter, and our improved SIFT performances including the number of matched feature points and the percent of correct matches are higher than the traditional SIFT, which verifies feasibility and effectiveness of our algorithm.展开更多
基金supported by the National Natural Science Foundation of China(61550110248)
文摘This paper highlights the memristor bridge-based lowpass filter (LPF) and improved image processing algorithms along with a novel adaptive Gaussian filter for denoising image and a new Gaussian pyramid for scale invariant feature transform (SIFT). First, a novel kind of LPF based on the memristor bridge is designed, whose cut-off frequency and other traits are demonstrated to change with different time and memristance. In light of the changeable parameter of the memristor bridge-based LPF, a new adaptive Gaussian filter and an improved SIFT algorithm are presented. Finally, experiment results show that the peak signalto- noise ratio (PSNR) of our denoising is bettered more than 2.77 dB compared to the corresponding of the traditional Gaussian filter, and our improved SIFT performances including the number of matched feature points and the percent of correct matches are higher than the traditional SIFT, which verifies feasibility and effectiveness of our algorithm.