NiTi alloys have drawn significant attentions in biomedical and aerospace fields due to their unique shape memory effect(SME),superelasticity(SE),damping characteristics,high corrosion resistance,and good biocompatibi...NiTi alloys have drawn significant attentions in biomedical and aerospace fields due to their unique shape memory effect(SME),superelasticity(SE),damping characteristics,high corrosion resistance,and good biocompatibility.Because of the unsatisfying processabilities and manufacturing requirements of complex NiTi components,additive manufacturing technology,especially laser powder bed fusion(LPBF),is appropriate for fabricating NiTi products.This paper comprehensively summarizes recent research on the NiTi alloys fabricated by LPBF,including printability,microstructural characteristics,phase transformation behaviors,lattice structures,and applications.Process parameters and microstructural features mainly influence the printability of LPBF-processed NiTi alloys.The phase transformation behaviors between austenite and martensite phases,phase transformation temperatures,and an overview of the influencing factors are summarized in this paper.This paper provides a comprehensive review of the mechanical properties with unique strain-stress responses,which comprise tensile mechanical properties,thermomechanical properties(e.g.critical stress to induce martensitic transformation,thermo-recoverable strain,and SE strain),damping properties and hardness.Moreover,several common structures(e.g.a negative Poisson’s ratio structure and a diamond-like structure)are considered,and the corresponding studies are summarized.It illustrates the various fields of application,including biological scaffolds,shock absorbers,and driving devices.In the end,the paper concludes with the main achievements from the recent studies and puts forward the limitations and development tendencies in the future.展开更多
Martensitic transformations,mechanical properties,shape memory effect and superelasticity of Ti-xZr-(30-x)Nb-4Ta(x=15,16,17 and 18;at%) alloys were investigated.X-ray diffraction(XRD),optical microscopy(OM) and transm...Martensitic transformations,mechanical properties,shape memory effect and superelasticity of Ti-xZr-(30-x)Nb-4Ta(x=15,16,17 and 18;at%) alloys were investigated.X-ray diffraction(XRD),optical microscopy(OM) and transmission electron microscopy(TEM) results indicated that the Ti-16Zr-14Nb-4Ta,Ti-17Zr-13Nb-4Ta and Ti-18Zr-12Nb4Ta alloys were mainly composed of α″-martensite,while the Ti-15Zr-15Nb-4Ta alloy was characterized by predominant p phase.The reverse martensitic transformation temperatures increased when Nb was replaced by Zr,indicating stronger p-stabilizing effect for the former.The Ti-15Zr-15Nb-4Ta alloy displayed superelasticity during tensile deformation with a recovery strain of 3.51%.For the other three alloys with higher Zr content,the martensitic reorientation occurred during tensile deformation,resulting in shape memory recovery upon subsequent heating.The maximum shape memory effect was 3.46% in the Ti-18Zr-12Nb-4Ta alloy.展开更多
As a β stabilizing element in Ti-based alloys,the effect of Mo on phase constitution,microstructure,mechanical and shape memory properties was investigated.Different compositions of Ti-xMo-3Sn alloys(where x=2,4,6,at...As a β stabilizing element in Ti-based alloys,the effect of Mo on phase constitution,microstructure,mechanical and shape memory properties was investigated.Different compositions of Ti-xMo-3Sn alloys(where x=2,4,6,at.%) were prepared by arc melting.A binary composition of Ti-6 Mo alloy was also prepared for comparison.Ti-xMo-3Sn alloys show low hardness and high ductility with 90% reduction in thickness while Ti-6 Mo alloy shows high hardness,brittle behavior,and poor ductility.Field emission scanning electron microscopy(FESEM) reveals round morphology of athermal ω(ωath) precipitates.The presence of ωath phase is also confirmed by X-ray diffraction(XRD)in both as-cast and solution-treated and quenched conditions.The optical microscopy(OM) and FESEM show that the amount of martensite forming during quenching decreases with an increase in Mo content,which is also due to β→ω transformation.The hardness trends reinforce the presence of ωath too.The shape memory effect(SME) of 9% is the highest for Ti-6 Mo-3Sn alloy.The SME is trivial due to ωath phase formation;however,the increase in SME is observed with an increase in Mo content,which is due to the reverse transformation from ωath and the stress-induced martensitic transformation.In addition,a new and very simple method was designed and used for shape memory effect measurement.展开更多
The effect of annealing treatments and thermomechanical cycling on the transformation behaviors and shape memory effect of Ti48.5Ni48Fe2Nb1.5 shape memory alloys were investigated using electrical resistivity measurem...The effect of annealing treatments and thermomechanical cycling on the transformation behaviors and shape memory effect of Ti48.5Ni48Fe2Nb1.5 shape memory alloys were investigated using electrical resistivity measurement and tensile testing. It is found that the transformation behaviors are influenced considerably by the annealing treatments. Both Ms and As increase with increasing annealing temperature and cooling rate. Martensite stabilization occurs during thermomechanical cycles, thus resulting in lower Ms and recovery ratio. Moreover, thermomechanical cycling leads to pseudo-elasticity. The yield point of stress-induced martensite (σSIM) increases with increasing cycles and pre-formation.展开更多
Butt welding of 0.2 mm-thick TiNi shape memory alloy sheet (SMA) was carried out using impulse laser, and tensile strength, fracture morphology, microstructure and phase change behaviour of welded joint were studied...Butt welding of 0.2 mm-thick TiNi shape memory alloy sheet (SMA) was carried out using impulse laser, and tensile strength, fracture morphology, microstructure and phase change behaviour of welded joint were studied. The results show that using impulse laser can realize good butt welding of TiNi SMA sheet, tensile strength of welded joint is 683 MPa, which achieves 97% of that of cold rolled base metal, and the fracture mode of welded joint is ductile type as well as base metal. The welded joint can be divided into four zones according to grain size and microstructure. The microstructures of welded seam center zone are fine equiaxed crystals and the microstructures of both lower surface and upper surface edge zones are columnar crystals. When welded joint is vacuum annealed after welding, the phase transformation process is basically similar to the annealed base metal.展开更多
The effects of microstructure and its evolution on the macroscopic superelastic stress-strain response of polycrystalline Shape Memory Alloy(SMA)are studied by a microstructure-based constitutive model developed in th...The effects of microstructure and its evolution on the macroscopic superelastic stress-strain response of polycrystalline Shape Memory Alloy(SMA)are studied by a microstructure-based constitutive model developed in this paper.The model is established on the following basis:(1)the transformation conditions of the unconstrained single crystal SMA microdomain(to be distinguished from the bulk single crystal),which serve as the local criterion for the derivation of overall transfor- mation yield conditions of the polycrystal;(2)the micro-to macro-transition scheme by which the connection between the polycrystal aggregates and the single crystal microdomain is established and the macroscopic transformation conditions of the polycrystal SMA are derived;(3)the quantitative incorporation of three microstruc- ture factors(i.e.,nucleation,growth and orientation distribution of martensite)into the modeling.These microstructural factors are intrinsic of specific polycrystal SMA systems and the role of each factor in the macroscopic constitutive response is quan- titatively modeled.It is demonstrated that the interplay of these factors will result in different macroscopic transformation kinematics and kinetics which are responsible for the observed macroscopic stress-strain hardening or softening response,the latter will lead to the localization and propagation of transformation bands in TiNi SMA.展开更多
The effects of microamount additions of RE (Tb, Sm) on martensitic transition, the magnetic-field-induced strain and the bending strength of highly textured polycrystalline Ni_(48)Mn_(33)Ga_(19) alloy were investigate...The effects of microamount additions of RE (Tb, Sm) on martensitic transition, the magnetic-field-induced strain and the bending strength of highly textured polycrystalline Ni_(48)Mn_(33)Ga_(19) alloy were investigated. The experimental results show that the addition of RE elements decreases the martensitic transformation temperature and the Curie temperature. But the bending strength of Ni-Mn-Ga-RE (RE=Tb, Sm) alloys increases remarkably because of the grain refinement. As a result, Ni-Mn-Ga-RE alloys will be applied practically with higher reliability and stability due to favorable plasticity and toughness. In addition, the replacement of small amounts Ga by Tb or Sm decreases the magnetic-field-induced strain of the alloys at room temperature.展开更多
The martensitic transformation temperature is the basis for the application of shape memory alloys(SMAs),and the ability to quickly and accurately predict the transformation temperature of SMAs has very important prac...The martensitic transformation temperature is the basis for the application of shape memory alloys(SMAs),and the ability to quickly and accurately predict the transformation temperature of SMAs has very important practical significance.In this work,machine learning(ML)methods were utilized to accelerate the search for shape memory alloys with targeted properties(phase transition temperature).A group of component data was selected to design shape memory alloys using reverse design method from numerous unexplored data.Component modeling and feature modeling were used to predict the phase transition temperature of the shape memory alloys.The experimental results of the shape memory alloys were obtained to verify the effectiveness of the support vector regression(SVR)model.The results show that the machine learning model can obtain target materials more efficiently and pertinently,and realize the accurate and rapid design of shape memory alloys with specific target phase transition temperature.On this basis,the relationship between phase transition temperature and material descriptors is analyzed,and it is proved that the key factors affecting the phase transition temperature of shape memory alloys are based on the strength of the bond energy between atoms.This work provides new ideas for the controllable design and performance optimization of Cu-based shape memory alloys.展开更多
Ni_(47)Ti_(44)Nb_(9)shape memory alloy(SMA)is a promising material in the aerospace field due to its wide transformation hysteresis.The application of shape memory effect depends on multistep thermomechan-ical loading...Ni_(47)Ti_(44)Nb_(9)shape memory alloy(SMA)is a promising material in the aerospace field due to its wide transformation hysteresis.The application of shape memory effect depends on multistep thermomechan-ical loading,viz.,low-temperature deformation and subsequent heating to recovery.Low-temperature deformation prestrain plays a pivotal role in shape memory properties tailoring of SMA components.However,microstructure evolution and deformation mechanisms of Ni_(47)Ti_(44)Nb_(9)SMA subjected to vari-ous prestrain levels are still unclear.To this end,microstructure evolution and shape memory behaviors of Ni_(47)Ti_(44)Nb_(9)alloy subjected to multistep thermomechanical loading with prestrain levels of 8%-16%at-28℃(M_(s)+30℃)were investigated.The results demonstrate that the stress-strain curve of the specimen exhibits four distinct stages at a maximal prestrain of 16%.Whereas stageⅡand stageⅢend at prestrains of∼8%and∼12%,respectively.In stageⅡ,the stress-induced martensitic transformation is accompanied by the dislocation slip of the NiTi matrix andβ-Nb inclusions.In stageⅢ,in addition to the higher density of dislocations and further growth of stress-induced martensite variants(SIMVs),(001)compound twins are introduced as a result of the(001)deformation twinning in stress-induced martensite.More{20-1}martensite twins are gradually introduced in stageⅣ.Correspondingly,after subsequent unloading and heating,a higher density of{114}austenite twins form in the specimen with a larger prestrain of 16%.With increasing prestrain from 8%to 16%,the recoverable strainε_(re)^(T)upon heating increases first and then decreases.Theε_(re)^(T)obtains a maximum of 7.03%at 10%prestrain and de-creases to 6.17%at 16%prestrain.The increase ofε_(re)^(T)can be attributed to the formation of new SIMVs,the further growth of existing SIMVs,and the recoverable(001)compound twins.While the decrease ofε_(re)^(T)is mainly associated with the irrecoverable strain by{20−1}martensite twins.The effect ofβ-Nb inclusions o展开更多
Heat treatment of Ti-50.9%Ni (mole fraction) alloy was studied by differential scanning calorimetry, X-ray diffraction, scanning electron microscopey and energy dispersive X-ray analysis to investigate the influence...Heat treatment of Ti-50.9%Ni (mole fraction) alloy was studied by differential scanning calorimetry, X-ray diffraction, scanning electron microscopey and energy dispersive X-ray analysis to investigate the influence of cooling rate on transformation behavior and microstructures of NiTi shape memory alloy. The experimental results show that three-stage phase transformation can be induced at a very low cooling rate such as cooling in furnace. The cooling rate also has a great influence on the phase transformation temperatures. Both martensitic start transformation temperature (Ms) and martensitic finish transformation temperature (Mf) decrease with the decrease of the cooling rate, and decreasing the cooling rate contributes to enhancing the M→A austenite transformation temperature. The phase transformation hysteresis (Af-Mf) increases with the decrease of the cooling rate. Heat treatment is unable to eliminate the textures formed in hot working of NiTi sample, but can weaken the intensity of them. The cooling rate has little influence on the grain size.展开更多
Magnetization associated with reversible phase transformation or rearrangement of martensite variants of two kinds of shape memory alloys under the coupling of tensile stress were investigated.One is the austenitic Ni...Magnetization associated with reversible phase transformation or rearrangement of martensite variants of two kinds of shape memory alloys under the coupling of tensile stress were investigated.One is the austenitic Ni_(46)Mn_(28)Ga_(20)Co_(3)Cu_(3)micro wire with the [001] preferred orientation,which exhibits enhanced cyclic stability and large fully recoverable strain(> 8%) due to the stress-induced reversible martensitic transformation at room temperature.The other is the Ni_(54)Mn_(24)Ga_(22)microwire with ferromagnetic martensitic phase,which has preferential orientation and also exhibits large tensile strain.Based on the improved mechanical properties,the strain-magnetization effect of the two kinds of microwire under the coupling of orthogonal magnetic field and tensile stress was performed and the results indicate that the magnetization decreases with the increase of tensile strains.Furthermore,the magnetization mechanism related to the magnetostructural evolution under stress-magnetic coupling was discussed.This study provides a new way for smart magnetic microwires for novel non-contact and non-destructive detection.展开更多
基金sponsored by the Natural and Science Foundation of China(Grant No.52275331)the Key-Area Research and Development Program of Guangdong Province(No.2020B090923001)+3 种基金the Key Research and Development Program of Hubei Province(No.2022BAA011)the Academic Frontier Youth Team(2018QYTD04)at Huazhong University of Science and Technology(HUST)the Hong Kong Scholars Program(No.XJ2022014)the Laboratory Project of Science and Technology on Power Beam Processes Laboratory。
文摘NiTi alloys have drawn significant attentions in biomedical and aerospace fields due to their unique shape memory effect(SME),superelasticity(SE),damping characteristics,high corrosion resistance,and good biocompatibility.Because of the unsatisfying processabilities and manufacturing requirements of complex NiTi components,additive manufacturing technology,especially laser powder bed fusion(LPBF),is appropriate for fabricating NiTi products.This paper comprehensively summarizes recent research on the NiTi alloys fabricated by LPBF,including printability,microstructural characteristics,phase transformation behaviors,lattice structures,and applications.Process parameters and microstructural features mainly influence the printability of LPBF-processed NiTi alloys.The phase transformation behaviors between austenite and martensite phases,phase transformation temperatures,and an overview of the influencing factors are summarized in this paper.This paper provides a comprehensive review of the mechanical properties with unique strain-stress responses,which comprise tensile mechanical properties,thermomechanical properties(e.g.critical stress to induce martensitic transformation,thermo-recoverable strain,and SE strain),damping properties and hardness.Moreover,several common structures(e.g.a negative Poisson’s ratio structure and a diamond-like structure)are considered,and the corresponding studies are summarized.It illustrates the various fields of application,including biological scaffolds,shock absorbers,and driving devices.In the end,the paper concludes with the main achievements from the recent studies and puts forward the limitations and development tendencies in the future.
基金financially supported by the National Key R&D Program of China (No.2018YFC1106600)the Funding from the Industrial Transformation and Upgrading of Strong Base Project of China (No.TC150B5C0/03)
文摘Martensitic transformations,mechanical properties,shape memory effect and superelasticity of Ti-xZr-(30-x)Nb-4Ta(x=15,16,17 and 18;at%) alloys were investigated.X-ray diffraction(XRD),optical microscopy(OM) and transmission electron microscopy(TEM) results indicated that the Ti-16Zr-14Nb-4Ta,Ti-17Zr-13Nb-4Ta and Ti-18Zr-12Nb4Ta alloys were mainly composed of α″-martensite,while the Ti-15Zr-15Nb-4Ta alloy was characterized by predominant p phase.The reverse martensitic transformation temperatures increased when Nb was replaced by Zr,indicating stronger p-stabilizing effect for the former.The Ti-15Zr-15Nb-4Ta alloy displayed superelasticity during tensile deformation with a recovery strain of 3.51%.For the other three alloys with higher Zr content,the martensitic reorientation occurred during tensile deformation,resulting in shape memory recovery upon subsequent heating.The maximum shape memory effect was 3.46% in the Ti-18Zr-12Nb-4Ta alloy.
基金the Higher Education Commission (HЕС) Pakistan for provision of research funding (Project No. 20-3844/R&D/HEC/14) under National Research Program for Universities (NRPU)
文摘As a β stabilizing element in Ti-based alloys,the effect of Mo on phase constitution,microstructure,mechanical and shape memory properties was investigated.Different compositions of Ti-xMo-3Sn alloys(where x=2,4,6,at.%) were prepared by arc melting.A binary composition of Ti-6 Mo alloy was also prepared for comparison.Ti-xMo-3Sn alloys show low hardness and high ductility with 90% reduction in thickness while Ti-6 Mo alloy shows high hardness,brittle behavior,and poor ductility.Field emission scanning electron microscopy(FESEM) reveals round morphology of athermal ω(ωath) precipitates.The presence of ωath phase is also confirmed by X-ray diffraction(XRD)in both as-cast and solution-treated and quenched conditions.The optical microscopy(OM) and FESEM show that the amount of martensite forming during quenching decreases with an increase in Mo content,which is also due to β→ω transformation.The hardness trends reinforce the presence of ωath too.The shape memory effect(SME) of 9% is the highest for Ti-6 Mo-3Sn alloy.The SME is trivial due to ωath phase formation;however,the increase in SME is observed with an increase in Mo content,which is due to the reverse transformation from ωath and the stress-induced martensitic transformation.In addition,a new and very simple method was designed and used for shape memory effect measurement.
基金supported by the National Natural Science Foundation of China (No. 50921003)
文摘The effect of annealing treatments and thermomechanical cycling on the transformation behaviors and shape memory effect of Ti48.5Ni48Fe2Nb1.5 shape memory alloys were investigated using electrical resistivity measurement and tensile testing. It is found that the transformation behaviors are influenced considerably by the annealing treatments. Both Ms and As increase with increasing annealing temperature and cooling rate. Martensite stabilization occurs during thermomechanical cycles, thus resulting in lower Ms and recovery ratio. Moreover, thermomechanical cycling leads to pseudo-elasticity. The yield point of stress-induced martensite (σSIM) increases with increasing cycles and pre-formation.
基金Project(200804)supported by State Key Laboratory of Advanced Welding and Joining,Harbin Institute of Technology,China
文摘Butt welding of 0.2 mm-thick TiNi shape memory alloy sheet (SMA) was carried out using impulse laser, and tensile strength, fracture morphology, microstructure and phase change behaviour of welded joint were studied. The results show that using impulse laser can realize good butt welding of TiNi SMA sheet, tensile strength of welded joint is 683 MPa, which achieves 97% of that of cold rolled base metal, and the fracture mode of welded joint is ductile type as well as base metal. The welded joint can be divided into four zones according to grain size and microstructure. The microstructures of welded seam center zone are fine equiaxed crystals and the microstructures of both lower surface and upper surface edge zones are columnar crystals. When welded joint is vacuum annealed after welding, the phase transformation process is basically similar to the annealed base metal.
基金The project supported by the Research Grant Committee(RGC)of Hong Kong SARthe National Natural Science Foundation of China and the Provincial Natural Foundation of Jiangxi Province of China
文摘The effects of microstructure and its evolution on the macroscopic superelastic stress-strain response of polycrystalline Shape Memory Alloy(SMA)are studied by a microstructure-based constitutive model developed in this paper.The model is established on the following basis:(1)the transformation conditions of the unconstrained single crystal SMA microdomain(to be distinguished from the bulk single crystal),which serve as the local criterion for the derivation of overall transfor- mation yield conditions of the polycrystal;(2)the micro-to macro-transition scheme by which the connection between the polycrystal aggregates and the single crystal microdomain is established and the macroscopic transformation conditions of the polycrystal SMA are derived;(3)the quantitative incorporation of three microstruc- ture factors(i.e.,nucleation,growth and orientation distribution of martensite)into the modeling.These microstructural factors are intrinsic of specific polycrystal SMA systems and the role of each factor in the macroscopic constitutive response is quan- titatively modeled.It is demonstrated that the interplay of these factors will result in different macroscopic transformation kinematics and kinetics which are responsible for the observed macroscopic stress-strain hardening or softening response,the latter will lead to the localization and propagation of transformation bands in TiNi SMA.
文摘The effects of microamount additions of RE (Tb, Sm) on martensitic transition, the magnetic-field-induced strain and the bending strength of highly textured polycrystalline Ni_(48)Mn_(33)Ga_(19) alloy were investigated. The experimental results show that the addition of RE elements decreases the martensitic transformation temperature and the Curie temperature. But the bending strength of Ni-Mn-Ga-RE (RE=Tb, Sm) alloys increases remarkably because of the grain refinement. As a result, Ni-Mn-Ga-RE alloys will be applied practically with higher reliability and stability due to favorable plasticity and toughness. In addition, the replacement of small amounts Ga by Tb or Sm decreases the magnetic-field-induced strain of the alloys at room temperature.
基金financially supported by the National Natural Science Foundation of China(No.51974028)。
文摘The martensitic transformation temperature is the basis for the application of shape memory alloys(SMAs),and the ability to quickly and accurately predict the transformation temperature of SMAs has very important practical significance.In this work,machine learning(ML)methods were utilized to accelerate the search for shape memory alloys with targeted properties(phase transition temperature).A group of component data was selected to design shape memory alloys using reverse design method from numerous unexplored data.Component modeling and feature modeling were used to predict the phase transition temperature of the shape memory alloys.The experimental results of the shape memory alloys were obtained to verify the effectiveness of the support vector regression(SVR)model.The results show that the machine learning model can obtain target materials more efficiently and pertinently,and realize the accurate and rapid design of shape memory alloys with specific target phase transition temperature.On this basis,the relationship between phase transition temperature and material descriptors is analyzed,and it is proved that the key factors affecting the phase transition temperature of shape memory alloys are based on the strength of the bond energy between atoms.This work provides new ideas for the controllable design and performance optimization of Cu-based shape memory alloys.
基金support from the National Natural Science Foundation of China(No.51775441)the National Science Fund for Excellent Young Scholars(No.51522509).
文摘Ni_(47)Ti_(44)Nb_(9)shape memory alloy(SMA)is a promising material in the aerospace field due to its wide transformation hysteresis.The application of shape memory effect depends on multistep thermomechan-ical loading,viz.,low-temperature deformation and subsequent heating to recovery.Low-temperature deformation prestrain plays a pivotal role in shape memory properties tailoring of SMA components.However,microstructure evolution and deformation mechanisms of Ni_(47)Ti_(44)Nb_(9)SMA subjected to vari-ous prestrain levels are still unclear.To this end,microstructure evolution and shape memory behaviors of Ni_(47)Ti_(44)Nb_(9)alloy subjected to multistep thermomechanical loading with prestrain levels of 8%-16%at-28℃(M_(s)+30℃)were investigated.The results demonstrate that the stress-strain curve of the specimen exhibits four distinct stages at a maximal prestrain of 16%.Whereas stageⅡand stageⅢend at prestrains of∼8%and∼12%,respectively.In stageⅡ,the stress-induced martensitic transformation is accompanied by the dislocation slip of the NiTi matrix andβ-Nb inclusions.In stageⅢ,in addition to the higher density of dislocations and further growth of stress-induced martensite variants(SIMVs),(001)compound twins are introduced as a result of the(001)deformation twinning in stress-induced martensite.More{20-1}martensite twins are gradually introduced in stageⅣ.Correspondingly,after subsequent unloading and heating,a higher density of{114}austenite twins form in the specimen with a larger prestrain of 16%.With increasing prestrain from 8%to 16%,the recoverable strainε_(re)^(T)upon heating increases first and then decreases.Theε_(re)^(T)obtains a maximum of 7.03%at 10%prestrain and de-creases to 6.17%at 16%prestrain.The increase ofε_(re)^(T)can be attributed to the formation of new SIMVs,the further growth of existing SIMVs,and the recoverable(001)compound twins.While the decrease ofε_(re)^(T)is mainly associated with the irrecoverable strain by{20−1}martensite twins.The effect ofβ-Nb inclusions o
基金Project (51071056) supported by the National Natural Science Foundation of ChinaProjects (HEUCFR1132, HEUCF121712) supported by the Fundamental Research Funds for the Central Universities of China
文摘Heat treatment of Ti-50.9%Ni (mole fraction) alloy was studied by differential scanning calorimetry, X-ray diffraction, scanning electron microscopey and energy dispersive X-ray analysis to investigate the influence of cooling rate on transformation behavior and microstructures of NiTi shape memory alloy. The experimental results show that three-stage phase transformation can be induced at a very low cooling rate such as cooling in furnace. The cooling rate also has a great influence on the phase transformation temperatures. Both martensitic start transformation temperature (Ms) and martensitic finish transformation temperature (Mf) decrease with the decrease of the cooling rate, and decreasing the cooling rate contributes to enhancing the M→A austenite transformation temperature. The phase transformation hysteresis (Af-Mf) increases with the decrease of the cooling rate. Heat treatment is unable to eliminate the textures formed in hot working of NiTi sample, but can weaken the intensity of them. The cooling rate has little influence on the grain size.
基金financially supported by the National High Technology Research and Development Program of China (No.2015AA034101)the State Key Laboratory for Advanced Metals and Materials (No.2018Z-26)+1 种基金the National Natural Science Foundation of China (No.51771121)the Science and Technology Commission of Shanghai Municipality (No.20ZR1437500)。
文摘Magnetization associated with reversible phase transformation or rearrangement of martensite variants of two kinds of shape memory alloys under the coupling of tensile stress were investigated.One is the austenitic Ni_(46)Mn_(28)Ga_(20)Co_(3)Cu_(3)micro wire with the [001] preferred orientation,which exhibits enhanced cyclic stability and large fully recoverable strain(> 8%) due to the stress-induced reversible martensitic transformation at room temperature.The other is the Ni_(54)Mn_(24)Ga_(22)microwire with ferromagnetic martensitic phase,which has preferential orientation and also exhibits large tensile strain.Based on the improved mechanical properties,the strain-magnetization effect of the two kinds of microwire under the coupling of orthogonal magnetic field and tensile stress was performed and the results indicate that the magnetization decreases with the increase of tensile strains.Furthermore,the magnetization mechanism related to the magnetostructural evolution under stress-magnetic coupling was discussed.This study provides a new way for smart magnetic microwires for novel non-contact and non-destructive detection.