期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
改进的简化粒子群算法优化模糊神经网络建模 被引量:16
1
作者 周丹 南敬昌 高明明 《计算机应用研究》 CSCD 北大核心 2015年第4期1000-1003,共4页
为了更准确地描述有记忆效应的射频功放特性,提出了一种改进的简化粒子群优化(PSO)算法,并结合自适应模糊推理系统(ANFIS)建立模糊神经网络功放模型。改进的简化PSO算法仅保留粒子的位置项,加入了随机的个体最优候选解,由粒子的当前位... 为了更准确地描述有记忆效应的射频功放特性,提出了一种改进的简化粒子群优化(PSO)算法,并结合自适应模糊推理系统(ANFIS)建立模糊神经网络功放模型。改进的简化PSO算法仅保留粒子的位置项,加入了随机的个体最优候选解,由粒子的当前位置、个体最优解、全局最优解和随机的个体最优候选解共同决定其位置项;采用线性递减惯性权重,并利用异步变化的动态学习因子,且新颖地引入拉普拉斯系数,从而增加了种群多样性,加快了收敛速度,避免陷入局部最优。由模型仿真对比可知,该方法建立的功放模型结构简单、收敛快、误差小、精度高,从而验证了建模方法的有效性和可靠性。 展开更多
关键词 记忆功放模型 自适应模糊推理系统 简化粒子群算法 个体最优候选解 拉普拉斯系数
下载PDF
基于改进粒子群算法的模糊小波神经网络建模 被引量:9
2
作者 南敬昌 田娜 《计算机工程与应用》 CSCD 北大核心 2017年第3期120-123,182,共5页
随着射频功放非线性对射频前端的影响日益增大,使得功放建模变得越来越重要。提出了一种自适应模糊小波神经网络模型结构,并利用改进的粒子群优化算法,建立有记忆的功放模型。将小波函数融入到自适应模糊推理系统的模糊规则中,得到新的... 随着射频功放非线性对射频前端的影响日益增大,使得功放建模变得越来越重要。提出了一种自适应模糊小波神经网络模型结构,并利用改进的粒子群优化算法,建立有记忆的功放模型。将小波函数融入到自适应模糊推理系统的模糊规则中,得到新的网络模型;在粒子群算法中引入最差位置影响因子,提高搜索效率,并进一步简化,忽略粒子的速度项,同时采用与适应度函数值相关的动态变化惯性权重,加快了收敛速度,避免出现"早熟"现象。仿真结果表明:该方法建立的功放模型误差小、精度高,能够有效地表征功放特性。 展开更多
关键词 模糊小波神经网络 小波函数 自适应模糊推理系统 改进粒子群优化算法 记忆效应 功放模型
下载PDF
基于分组混沌PSO算法的模糊神经网络建模研究 被引量:5
3
作者 张楠 南敬昌 高明明 《计算机工程与应用》 CSCD 北大核心 2017年第9期31-37,共7页
为改善记忆功放建模的精度,且针对粒子群算法早期收敛速度较快,但在后期易陷入早熟收敛,局部最优等特点,提出了一种分组并行混沌粒子群优化算法(Grouping Parallel-Chaotic Particle Swarm Optimization,GPCPSO),将分组粒子群优化算法... 为改善记忆功放建模的精度,且针对粒子群算法早期收敛速度较快,但在后期易陷入早熟收敛,局部最优等特点,提出了一种分组并行混沌粒子群优化算法(Grouping Parallel-Chaotic Particle Swarm Optimization,GPCPSO),将分组粒子群优化算法与混沌思想相结合,并用该算法优化动态模糊神经网络(Dynamic Fuzzy Neural Network,DFNN)参数,建立DFNN功放模型。引入分组的CPSO群算法,将种群划分为若干个组,每组单独计算,大大提高了收敛速度,同时将混沌思想运用到每个粒子当中去,避免早熟和局部最优,缩短了迭代时间。通过仿真结果可以看到,GP-CPSO优化后的动态模糊神经网络建模的训练误差减小到0.1以内,收敛速度提高32.5%,从而验证了这种建模方法有效且可靠。 展开更多
关键词 混沌思想 分组并行粒子群算法 动态模糊神经网络 记忆功放模型
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部