The focus of this study is to investigate the influence of memory effect and the relation of its existence with the dissociation temperature,using gas hydrate formation and dissociation experiments.This is beneficial ...The focus of this study is to investigate the influence of memory effect and the relation of its existence with the dissociation temperature,using gas hydrate formation and dissociation experiments.This is beneficial because memory effect is considered as an effective approach to promote the thermodynamic and dynamic conditions of gas hydrate nucleation.Seven experimental systems (twenty tests in total) were performed in a 1 L pressure cell.Three types of hydrate morphology,namely massive,whiskery and jelly crystals were present in the experiments.The pressures and temperatures at the time when visual hydrate crystals appeared were measured.Furthermore,the influence of memory effect was quantified in terms of pressure-temperature-time (p-T-t) relations.The results revealed that memory effect could promote the thermodynamic conditions and shorten the induction time when the dissociation temperature was not higher than 25℃.In this study,the nucleation superpressure and induction time decrease gradually with time of tests,when the earlier and the later tests are compared.It is assumed that the residual structure of hydrate dissociation,as the source of the memory effect,provides a site for mass transfer between host and guest molecules.Therefore,a driving force is created between the residual structures and its surrounding bulk phase to promote the hydrate nucleation.However,when the dissociation temperature was higher than 25 ℃,the memory effect vanished.These findings provide references for the application of memory effect in hydrate-based technology.展开更多
Insights into the mechanism of hydrate nucleation are of great significance for the development of hydrate-based technologies,hydrate relevant flow assurance,and the exploration of in situ natural gas hydrates.Compare...Insights into the mechanism of hydrate nucleation are of great significance for the development of hydrate-based technologies,hydrate relevant flow assurance,and the exploration of in situ natural gas hydrates.Compared with the thermodynamics of hydrate formation,understanding the nucleation mechanism is challenging and has drawn substantial attention in recent decades.In this paper,we attempt to give a comprehensive review of the recent progress of studies of clathrate hydrate nucleation.First,the existing hypotheses on the hydrate nucleation mechanism are introduced and discussed.Then,we summarize recent experimental studies on induction time,a key parameter evaluating the velocity of the nucleation process.Subsequently,the memory effect is particularly discussed,followed by the suggestion of several promising research perspectives.展开更多
基金supported by the National Natural Science Foundation(No.50874040,No.50904026)Heilongjiang Provincial Natural Science Foundation(No.B2007-10)Harbin Innovation Talent of Science and Technology Foundation(No.2007RFXXS050,No.2008RFQXG111)
文摘The focus of this study is to investigate the influence of memory effect and the relation of its existence with the dissociation temperature,using gas hydrate formation and dissociation experiments.This is beneficial because memory effect is considered as an effective approach to promote the thermodynamic and dynamic conditions of gas hydrate nucleation.Seven experimental systems (twenty tests in total) were performed in a 1 L pressure cell.Three types of hydrate morphology,namely massive,whiskery and jelly crystals were present in the experiments.The pressures and temperatures at the time when visual hydrate crystals appeared were measured.Furthermore,the influence of memory effect was quantified in terms of pressure-temperature-time (p-T-t) relations.The results revealed that memory effect could promote the thermodynamic conditions and shorten the induction time when the dissociation temperature was not higher than 25℃.In this study,the nucleation superpressure and induction time decrease gradually with time of tests,when the earlier and the later tests are compared.It is assumed that the residual structure of hydrate dissociation,as the source of the memory effect,provides a site for mass transfer between host and guest molecules.Therefore,a driving force is created between the residual structures and its surrounding bulk phase to promote the hydrate nucleation.However,when the dissociation temperature was higher than 25 ℃,the memory effect vanished.These findings provide references for the application of memory effect in hydrate-based technology.
基金Supported by the National Key Research and Development Program of China(2016YFC0304003,2017YFC0307302)the National Natural Science Foundation of China(21636009,51576209,21522609)the Innovative Talents Support Program for Postgraduates(BX201700288)
文摘Insights into the mechanism of hydrate nucleation are of great significance for the development of hydrate-based technologies,hydrate relevant flow assurance,and the exploration of in situ natural gas hydrates.Compared with the thermodynamics of hydrate formation,understanding the nucleation mechanism is challenging and has drawn substantial attention in recent decades.In this paper,we attempt to give a comprehensive review of the recent progress of studies of clathrate hydrate nucleation.First,the existing hypotheses on the hydrate nucleation mechanism are introduced and discussed.Then,we summarize recent experimental studies on induction time,a key parameter evaluating the velocity of the nucleation process.Subsequently,the memory effect is particularly discussed,followed by the suggestion of several promising research perspectives.