期刊文献+
共找到65篇文章
< 1 2 4 >
每页显示 20 50 100
PRI modulation recognition and sequence search under small sample prerequisite 被引量:2
1
作者 ZHANG Chunjie LIU Yuchen SI Weijian 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2023年第3期706-713,共8页
Pulse repetition interval(PRI)modulation recognition and pulse sequence search are significant for effective electronic support measures.In modern electromagnetic environments,different types of inter-pulse slide rada... Pulse repetition interval(PRI)modulation recognition and pulse sequence search are significant for effective electronic support measures.In modern electromagnetic environments,different types of inter-pulse slide radars are highly confusing.There are few available training samples in practical situations,which leads to a low recognition accuracy and poor search effect of the pulse sequence.In this paper,an approach based on bi-directional long short-term memory(BiLSTM)networks and the temporal correlation algorithm for PRI modulation recognition and sequence search under the small sample prerequisite is proposed.The simulation results demonstrate that the proposed algorithm can recognize unilinear,bilinear,sawtooth,and sinusoidal PRI modulation types with 91.43% accuracy and complete the pulse sequence search with 30% missing pulses and 50% spurious pulses under the small sample prerequisite. 展开更多
关键词 inter-pulse slide pulse repetition interval(PRI)modulation type bi-directional long short-term memory(bilstm)network sequence search
下载PDF
基于BiLSTM-CRF的商情实体识别模型 被引量:41
2
作者 张应成 杨洋 +3 位作者 蒋瑞 全兵 张利君 任晓雷 《计算机工程》 CAS CSCD 北大核心 2019年第5期308-314,共7页
结合语言模型条件随机场(CRF)和双向长短时记忆(BiLSTM)网络,构建一种BiLSTM-CRF模型,以提取商情文本序列中的招标人、招标代理以及招标编号3类实体信息。将规范化后的招标文本序列按字进行向量化,利用BiLSTM神经网络获取序列化文本的... 结合语言模型条件随机场(CRF)和双向长短时记忆(BiLSTM)网络,构建一种BiLSTM-CRF模型,以提取商情文本序列中的招标人、招标代理以及招标编号3类实体信息。将规范化后的招标文本序列按字进行向量化,利用BiLSTM神经网络获取序列化文本的前向、后向文本特征,并通过CRF提取出双向本文特征中相应的实体。实验结果表明,与传统机器学习算法CRF相比,该模型3类实体的精确率、召回率和F1值平均提升15.21%、12.06%和13.70%。 展开更多
关键词 条件随机场 双向长短时记忆网络 语言模型 命名实体识别 深度学习
下载PDF
基于BiLSTM的滚动轴承故障诊断研究 被引量:38
3
作者 赵志宏 赵敬娇 魏子洋 《振动与冲击》 EI CSCD 北大核心 2021年第1期95-101,共7页
针对滚动轴承的故障诊断,设计并实现了一种基于双向长短期记忆网络(BiLSTM)的诊断模型。将原始振动信号直接作为模型输入,自动提取滚动轴承故障特征,可以对内圈、滚动体、外圈不同故障类型及不同损伤程度的滚动轴承进行故障识别。该模... 针对滚动轴承的故障诊断,设计并实现了一种基于双向长短期记忆网络(BiLSTM)的诊断模型。将原始振动信号直接作为模型输入,自动提取滚动轴承故障特征,可以对内圈、滚动体、外圈不同故障类型及不同损伤程度的滚动轴承进行故障识别。该模型通过BiLSTM神经网络自动提取轴承振动信号的深层信息,弥补了传统故障诊断方法需要人工提取特征的不足,实现端到端的滚动轴承故障智能诊断。滚动轴承实测振动信号实验结果表明故障识别准确率可以达到99.8%以上,该方法具有一定的应用价值。 展开更多
关键词 双向长短期记忆网络 轴承故障诊断 深度学习
下载PDF
基于PCA-DBILSTM的多因素短期负荷预测模型 被引量:34
4
作者 李泽文 胡让 +3 位作者 刘湘 邓裕文 唐鹏 王杨帆 《电力系统及其自动化学报》 CSCD 北大核心 2020年第12期32-39,共8页
针对传统神经网络在短期负荷预测中预测精度不高、预测时间较长的问题,提出了一种基于主成分分析法和深度双向长短期记忆神经网络的短期负荷预测模型。该模型运用主成分分析法对原始多维输入变量组成的时间序列进行主成分提取,实现原始... 针对传统神经网络在短期负荷预测中预测精度不高、预测时间较长的问题,提出了一种基于主成分分析法和深度双向长短期记忆神经网络的短期负荷预测模型。该模型运用主成分分析法对原始多维输入变量组成的时间序列进行主成分提取,实现原始负荷的降维;然后通过深度双向长短期记忆网络结合Adamax优化算法,对提取的主成分序列和负荷实际输出序列之间的非线性关系建立网络模型。以中国某地区的负荷数据作为实际算例,验证该方法预测精度达到了99.44%,并与传统预测模型进行对比,在保证预测精度的同时,大幅降低了预测时间。 展开更多
关键词 主成分分析 双向长短期记忆网络 时间序列 负荷预测 Adamax算法
下载PDF
考虑特征重要性值波动的MI-BILSTM短期负荷预测 被引量:26
5
作者 孙辉 杨帆 +3 位作者 高正男 胡姝博 王钟辉 刘劲松 《电力系统自动化》 EI CSCD 北大核心 2022年第8期95-103,共9页
在短期负荷预测中,含有循环单元的深度学习模型应用广泛,但训练时采用的权值共享结构具有时不变性,忽略了输入特征(气象、日期、历史负荷值等)在不同时刻下给负荷变化带来的不同影响,即权值共享结构无法追踪输入特征的重要性值波动。针... 在短期负荷预测中,含有循环单元的深度学习模型应用广泛,但训练时采用的权值共享结构具有时不变性,忽略了输入特征(气象、日期、历史负荷值等)在不同时刻下给负荷变化带来的不同影响,即权值共享结构无法追踪输入特征的重要性值波动。针对此问题,提出一种考虑特征重要性值波动的互信息(MI)-双向长短期记忆(BILSTM)网络预测方法。利用MI法提取输入特征在不同时刻下的重要性值,组成重要性值波动矩阵,并将其作为系数修正原输入特征。然后,代入BILSTM网络中完成训练和预测工作,弥补权值共享结构无法追踪特征重要性值波动的缺陷,进一步提高预测精度。最后,以某地区实际电网负荷数据为例,验证所提短期负荷预测方法的有效性。 展开更多
关键词 短期负荷预测 双向长短期记忆网络 权值共享 互信息法
下载PDF
基于注意力机制BiLSTM的设备智能故障诊断方法 被引量:22
6
作者 王太勇 王廷虎 +2 位作者 王鹏 乔卉卉 徐明达 《天津大学学报(自然科学与工程技术版)》 EI CSCD 北大核心 2020年第6期601-608,共8页
状态监测与故障诊断是保证机械设备安全稳定运行的必要手段.本文提出一种基于注意力机制双向LSTM网络(ABiLSTM)的深度学习框架用于机械设备智能故障诊断.首先,将传感器采集的设备原始数据进行预处理,并划分为训练样本集与测试样本集;其... 状态监测与故障诊断是保证机械设备安全稳定运行的必要手段.本文提出一种基于注意力机制双向LSTM网络(ABiLSTM)的深度学习框架用于机械设备智能故障诊断.首先,将传感器采集的设备原始数据进行预处理,并划分为训练样本集与测试样本集;其次,训练多个不同尺度的双向LSTM网络对原始时域信号进行特征提取,得到设备故障多尺度特征;再次,通过引入注意力机制,对不同双向LSTM网络提取特征的权重参数进行优化,筛选保留目标特征,滤除冗杂特征,以实现精准提取有效故障特征;最后,在输出端利用Softmax分类器输出故障分类结果.通过利用发动机气缸振动实验数据和凯斯西储大学滚动轴承实验数据进行故障诊断实验,故障识别准确率均达到99%以上.实验结果表明,ABiLSTM模型可以实现对原始时域信号的多尺度特征提取和故障诊断,通过与深度卷积网络(CNN)、深度去噪自编码器(DAE)和支持向量机(SVM)等方法进行对比,ABiLSTM模型的故障识别性能优于各类常见模型.另外,通过利用凯斯西储大学滚动轴承在不同工况条件下的数据,对ABiLSTM模型进行泛化性能实验,变工况样本的故障识别准确率仍然能够达到95%以上. 展开更多
关键词 故障诊断 深度学习 双向长短期记忆网络 注意力机制
下载PDF
采用改进CNN-BiLSTM模型的刀具磨损状态监测 被引量:19
7
作者 刘会永 张松 +1 位作者 李剑峰 栾晓娜 《中国机械工程》 EI CAS CSCD 北大核心 2022年第16期1940-1947,1956,共9页
自动化切削加工过程中,准确可靠地监测刀具磨损状态是保证加工质量和加工效率的关键。针对刀具磨损状态相关特征提取繁琐、准确率低及传统的深度学习网络不能全面提取数据隐含信息等问题,提出了一种以卷积神经网络(CNN)和双向长短时记忆... 自动化切削加工过程中,准确可靠地监测刀具磨损状态是保证加工质量和加工效率的关键。针对刀具磨损状态相关特征提取繁琐、准确率低及传统的深度学习网络不能全面提取数据隐含信息等问题,提出了一种以卷积神经网络(CNN)和双向长短时记忆(BiLSTM)网络集成模型为基础并通过在卷积神经网络中添加批量标准化层和采用两个双向长短时记忆网络层的改进模型,该模型通过自动提取小波阈值降噪等预处理和降采样后的切削力、振动和声音信号的空间和时序特征来实现刀具磨损状态监测。将改进模型与CNN-BiLSTM模型及传统的深度学习模型进行对比,发现改进模型在精度和稳定性方面有较大提升。所提方法为准确监测自动化加工过程中刀具磨损状态、提高生产效率和加工质量提供了技术支持。 展开更多
关键词 小波阈值降噪 卷积神经网络 双向长短时记忆网络 刀具磨损状态监测
下载PDF
基于Transformer与BiLSTM的网络流量入侵检测 被引量:11
8
作者 石磊 张吉涛 +2 位作者 高宇飞 卫琳 陶永才 《计算机工程》 CAS CSCD 北大核心 2023年第3期29-36,57,共9页
网络流量入侵检测技术对主机和平台安全起着重要作用。目前常采用机器学习和深度学习技术进行网络流量入侵检测,然而相关数据集的不平衡问题导致模型偏向于学习多数类数据的特征而忽视少数类数据的特征,严重影响了检测准确率。结合SMOT... 网络流量入侵检测技术对主机和平台安全起着重要作用。目前常采用机器学习和深度学习技术进行网络流量入侵检测,然而相关数据集的不平衡问题导致模型偏向于学习多数类数据的特征而忽视少数类数据的特征,严重影响了检测准确率。结合SMOTE算法和生成对抗网络(GAN)构建OSW模型对训练数据进行预处理,通过Wasserstein GAN学习少数类数据分布情况,避免边缘分布问题,构造平衡数据集。建立基于Transformer与双向长短时记忆-深度神经网络(BiLSTM-DNN)的TBD入侵检测模型,使用Transformer中的编码器捕捉全局联系并对输入数据进行初步特征提取,利用BiLSTM网络进行长距离依赖特征提取保留数据的序列化特征,采用DNN进一步提取深层次特征,最终通过Softmax分类器获得分类结果。在NSL_KDD数据集上的实验结果表明,在进行数据平衡处理后TBD模型的二分类和五分类任务检测准确率分别达到90.3%和79.8%,均高于对比的深度神经网络模型以及机器学习算法。 展开更多
关键词 入侵检测 多头注意力 双向长短时记忆网络 深度神经网络 数据平衡处理
下载PDF
多特征混合模型文本情感分析方法 被引量:10
9
作者 李文亮 杨秋翔 秦权 《计算机工程与应用》 CSCD 北大核心 2021年第19期205-213,共9页
近年来,深度学习被广泛应用于文本情感分析。其中文本卷积神经网络(TextCNN)最具代表性,但是TxetCNN的语义特征提取存在词嵌入维度语义特征丢失、最大池化算法特征提取不足和文本长期依赖关系丢失的问题。针对以上问题,提出多特征混合模... 近年来,深度学习被广泛应用于文本情感分析。其中文本卷积神经网络(TextCNN)最具代表性,但是TxetCNN的语义特征提取存在词嵌入维度语义特征丢失、最大池化算法特征提取不足和文本长期依赖关系丢失的问题。针对以上问题,提出多特征混合模型(BiLSTM-MFCNN)的文本情感分析方法。该方法使用双向长短记忆网络(BiLSTM)学习文本的长期依赖关系;改进TextCNN的卷积层和池化层提出多特征卷积神经网络(MFCNN),卷积层利用五种不同的卷积算法,分别从句子维度、整个词嵌入维度、单个词嵌入维度、相邻词向量维度和单个词向量维度提取文本的语义特征,池化层利用最大池化算法和平均池化算法,获取文本的情感特征。在中文NLPCCEmotion Classification Challenge和COAE2014数据集、英文Twitter数据集进行对比实验,实验结果表明该混合模型在文本情感分析任务中能够取得更好的效果。 展开更多
关键词 文本情感分析 混合模型 双向长短记忆网络(bilstm) 多特征卷积神经网络(MFCNN)
下载PDF
基于CDBN与BiLSTM的多元退化设备剩余寿命预测 被引量:9
10
作者 牟含笑 郑建飞 +2 位作者 胡昌华 赵瑞星 董青 《航空学报》 EI CAS CSCD 北大核心 2022年第7期301-312,共12页
基于多传感器对复杂工业设备的多元健康状态进行监测,进而实现设备更全面准确的性能评估、剩余寿命预测与健康管理已逐渐推广应用。针对一类监测数据呈现大规模、非线性、高维化等特点的多元退化设备,提出了一种基于连续深度置信网络(CD... 基于多传感器对复杂工业设备的多元健康状态进行监测,进而实现设备更全面准确的性能评估、剩余寿命预测与健康管理已逐渐推广应用。针对一类监测数据呈现大规模、非线性、高维化等特点的多元退化设备,提出了一种基于连续深度置信网络(CDBN)与双向长短期记忆(BiLSTM)网络的剩余寿命预测方法。首先,通过CDBN对监测到的性能退化数据进行分析,提取出反映多元退化设备隐含深层次特征的健康指标;然后,根据构造的健康指标,利用BiLSTM网络挖掘其时序信息和退化趋势,预测多元退化设备的剩余寿命;最后,利用蒙特卡洛仿真技术得到剩余寿命的区间估计,并通过商用模块化航空推进系统数据集验证所提方法的有效性和先进性。结果表明:所提方法能够有效提高此类设备的剩余寿命预测准确度,具有潜在的应用价值。 展开更多
关键词 多元退化设备 剩余寿命预测 健康指标 连续深度置信网络(CDBN) 双向长短期记忆(bilstm)网络
原文传递
基于BERT的初等数学文本命名实体识别方法 被引量:9
11
作者 张毅 王爽胜 +2 位作者 何彬 叶培明 李克强 《计算机应用》 CSCD 北大核心 2022年第2期433-439,共7页
在初等数学领域的命名实体识别(NER)中,针对传统命名实体识别方法中词嵌入无法表征一词多义以及特征提取过程中忽略部分局部特征的问题,提出一种基于BERT的初等数学文本命名实体识别方法——BERT-BiLSTM-IDCNN-CRF。首先,采用BERT进行... 在初等数学领域的命名实体识别(NER)中,针对传统命名实体识别方法中词嵌入无法表征一词多义以及特征提取过程中忽略部分局部特征的问题,提出一种基于BERT的初等数学文本命名实体识别方法——BERT-BiLSTM-IDCNN-CRF。首先,采用BERT进行预训练,然后将训练得到的词向量输入到双向长短期记忆(BiLSTM)网络与迭代膨胀卷积网络(IDCNN)中提取特征,再将两种神经网络输出的特征进行合并,最后经过条件随机场(CRF)修正后进行输出。实验结果表明:BERT-BiLSTM-IDCNN-CRF在初等数学试题数据集上的F1值为93.91%,相较于BiLSTM-CRF基准方法的F1值提升了4.29个百分点,相较于BERT-BiLSTM-CRF方法的F1值提高了1.23个百分点;该方法对线、角、面、数列等实体识别的F1值均高于91%,验证了该方法对初等数学实体识别的有效性。此外,在所提方法的基础上结合注意力机制后,该方法的召回率下降了0.67个百分点,但准确率上升了0.75个百分点,注意力机制的引入对所提方法的识别效果提升不大。 展开更多
关键词 命名实体识别 初等数学 BERT 双向长短期记忆网络 膨胀卷积 注意力机制
下载PDF
基于双层长短时记忆网络的齿轮故障诊断方法 被引量:8
12
作者 王维锋 邱雪欢 +1 位作者 孙剑桥 张惠民 《装甲兵工程学院学报》 2018年第2期81-85,共5页
为了提高齿轮故障诊断准确率,解决齿轮故障诊断中数据量大、提取特征困难等问题,构建了齿轮故障诊断系统,采用深度学习方法建立了齿轮故障诊断模型,提出一种基于双层长短时记忆(Binary Long Short Term Memory,Bi LSTM)网络的故障诊断方... 为了提高齿轮故障诊断准确率,解决齿轮故障诊断中数据量大、提取特征困难等问题,构建了齿轮故障诊断系统,采用深度学习方法建立了齿轮故障诊断模型,提出一种基于双层长短时记忆(Binary Long Short Term Memory,Bi LSTM)网络的故障诊断方法,并对该方法进行了性能分析和对比实验。结果表明:采用Bi LSTM网络方法进行齿轮故障诊断的准确率达到99.76%,分类效果优于支持向量机、Xg Boost、卷积神经网络和长短时记忆(LSTM)网络等方法,有效地提高了故障诊断精度。 展开更多
关键词 齿轮 故障诊断 双层长短时记忆(bilstm)网络 深度学习
原文传递
基于改进的双向长短期记忆网络的视频摘要生成模型 被引量:8
13
作者 武光利 李雷霆 +1 位作者 郭振洲 王成祥 《计算机应用》 CSCD 北大核心 2021年第7期1908-1914,共7页
针对传统视频摘要方法往往没有考虑时序信息以及提取的视频特征过于复杂、易出现过拟合现象的问题,提出一种基于改进的双向长短期记忆(BiLSTM)网络的视频摘要生成模型。首先,通过卷积神经网络(CNN)提取视频帧的深度特征,而且为了使生成... 针对传统视频摘要方法往往没有考虑时序信息以及提取的视频特征过于复杂、易出现过拟合现象的问题,提出一种基于改进的双向长短期记忆(BiLSTM)网络的视频摘要生成模型。首先,通过卷积神经网络(CNN)提取视频帧的深度特征,而且为了使生成的视频摘要更具多样性,采用BiLSTM网络将深度特征识别任务转换为视频帧的时序特征标注任务,让模型获得更多上下文信息;其次,考虑到生成的视频摘要应当具有代表性,因此通过融合最大池化在降低特征维度的同时突出关键信息以淡化冗余信息,使模型能够学习具有代表性的特征,而特征维度的降低也减少了全连接层需要的参数,避免了过拟合问题;最后,预测视频帧的重要性分数并转换为镜头分数,以此选取关键镜头生成视频摘要。实验结果表明,在标准数据集TvSum和SumMe上,改进后的视频摘要生成模型能提升生成视频摘要的准确性;而且它的F1-score值也比基于长短期记忆(LSTM)网络的视频摘要模型DPPLSTM在两个数据集上分别提高1.4和0.3个百分点。 展开更多
关键词 视频摘要 卷积神经网络 双向长短期记忆网络 最大池化
下载PDF
融合微气象参数预测的输电线动态增容模型 被引量:7
14
作者 刘志成 董向明 +2 位作者 严昊 李群山 易本顺 《电力系统及其自动化学报》 CSCD 北大核心 2022年第1期56-64,共9页
为了挖掘输电线路的输送潜力和保障输电线路的稳定运行,提出了经验模态分解-双向长短期记忆网络-贝叶斯优化预测模型,从而实现微气象参数递推多步预测。基于预测误差建立高斯分布模型,从预测结果中选择相对保守的气象参数代入热平衡方... 为了挖掘输电线路的输送潜力和保障输电线路的稳定运行,提出了经验模态分解-双向长短期记忆网络-贝叶斯优化预测模型,从而实现微气象参数递推多步预测。基于预测误差建立高斯分布模型,从预测结果中选择相对保守的气象参数代入热平衡方程进行输电线动态容量计算;实现对输电线路所跨越区间中环境最恶劣部分的微气象数据日前预测,以及输电线路动态容量的保守计算。实验仿真结果表明,本文提出的动态增容技术能够在保证输电线路安全可靠的前提下,大幅挖掘现有输电线路的传输潜力,对输电网络的运行有一定的指导作用。 展开更多
关键词 经验模态分解 双向长短期记忆网络 动态增容 微气象 递推多步预测
下载PDF
基于麻雀搜索优化的Attention-BiLSTM短期电力负荷预测 被引量:5
15
作者 吴永洪 张智斌 《自动化仪表》 CAS 2023年第8期91-95,共5页
为了提高电力负荷预测精度,在双向长短期记忆(BiLSTM)神经网络中加入注意力机制。通过对网络的隐含状态赋予不同的权重,减少历史信息的损失,增强重要信息的影响,提高准确性。针对BiLSTM参数选取随机性大且困难的问题,提出了一种利用麻... 为了提高电力负荷预测精度,在双向长短期记忆(BiLSTM)神经网络中加入注意力机制。通过对网络的隐含状态赋予不同的权重,减少历史信息的损失,增强重要信息的影响,提高准确性。针对BiLSTM参数选取随机性大且困难的问题,提出了一种利用麻雀搜索算法(SSA)优化的Attention-BiLSTM模型,并通过历史用电负荷数据以及相关影响因素数据进行短期电力负荷预测。首先,对用电负荷数据、气象数据进行预处理。其次,将处理好的数据训练模型,借助SSA对BiLSTM的参数进行寻优,使输入数据与网络结构更好地进行匹配。最后,进行负荷预测。试验结果表明,所构建模型拟合优度达0.9966,有效提高了预测精度且在进行短期负荷预测时具有有效性。 展开更多
关键词 麻雀搜索算法 双向长短期记忆网络 注意力机制 电力负荷预测 循环神经网络 短期电力负荷
下载PDF
基于知识库实体增强BERT模型的中文命名实体识别 被引量:6
16
作者 胡婕 胡燕 +1 位作者 刘梦赤 张龑 《计算机应用》 CSCD 北大核心 2022年第9期2680-2685,共6页
针对预训练模型BERT存在词汇信息缺乏的问题,在半监督实体增强最小均方差预训练模型的基础上提出了一种基于知识库实体增强BERT模型的中文命名实体识别模型OpenKG+Entity Enhanced BERT+CRF。首先,从中文通用百科知识库CN-DBPedia中下... 针对预训练模型BERT存在词汇信息缺乏的问题,在半监督实体增强最小均方差预训练模型的基础上提出了一种基于知识库实体增强BERT模型的中文命名实体识别模型OpenKG+Entity Enhanced BERT+CRF。首先,从中文通用百科知识库CN-DBPedia中下载文档并用Jieba中文分词抽取实体来扩充实体词典;然后,将词典中的实体嵌入到BERT中进行预训练,将训练得到的词向量输入到双向长短期记忆网络(BiLSTM)中提取特征;最后,经过条件随机场(CRF)修正后输出结果。在CLUENER 2020和MSRA数据集上进行模型验证,将所提模型分别与Entity Enhanced BERT Pre-training、BERT+BiLSTM、ERNIE和BiLSTM+CRF模型进行对比实验。实验结果表明,该模型的F1值在两个数据集上比四个对比模型分别提高了1.63个百分点和1.1个百分点、3.93个百分点和5.35个百分点、2.42个百分点和4.63个百分点以及6.79个百分点和7.55个百分点。可见,所提模型对命名实体识别的综合效果得到有效提升,F1值均优于对比模型。 展开更多
关键词 命名实体识别 知识库 实体词典 预训练模型 双向长短期记忆网络
下载PDF
基于BERT和联合学习的裁判文书命名实体识别 被引量:6
17
作者 曾兰兰 王以松 陈攀峰 《计算机应用》 CSCD 北大核心 2022年第10期3011-3017,共7页
正确识别裁判文书中的实体是构建法律知识图谱和实现智慧法院的重要基础。然而常用的命名实体识别(NER)模型并不能很好地解决裁判文书中的多义词表示和实体边界识别错误的问题。为了有效提升裁判文书中各类实体的识别效果,提出了一种基... 正确识别裁判文书中的实体是构建法律知识图谱和实现智慧法院的重要基础。然而常用的命名实体识别(NER)模型并不能很好地解决裁判文书中的多义词表示和实体边界识别错误的问题。为了有效提升裁判文书中各类实体的识别效果,提出了一种基于联合学习和BERT的BiLSTM-CRF(JLB-BiLSTM-CRF)模型。首先,利用BERT对输入字符序列进行编码以增强词向量的表征能力;然后,使用双向长短期记忆(BiLSTM)网络建模长文本信息,并将NER任务和中文分词(CWS)任务进行联合训练以提升实体的边界识别率。实验结果表明,所提模型在测试集上的精确率达到了94.36%,召回率达到了94.94%,F1值达到了94.65%,相较于BERT-BiLSTM-CRF模型分别提升了1.05个百分点、0.48个百分点和0.77个百分点,验证了JLB-BiLSTM-CRF模型在裁判文书NER任务上的有效性。 展开更多
关键词 裁判文书 双向长短期记忆网络 BERT 联合学习 命名实体识别
下载PDF
基于RF-BiLSTM的柔直阀冷入阀水温预测及冷却能力评估 被引量:4
18
作者 唐文虎 林泽康 +3 位作者 辛妍丽 赵伟 吴亮 金晶 《电力工程技术》 北大核心 2023年第3期102-111,148,共11页
为实现柔性直流(voltage sourced converter-high voltage direct current,VSC-HVDC)换流阀冷却系统入阀水温的智能预测,文中提出一种基于随机森林(random forest,RF)和双向长短时记忆(bi-directional long short-term memory,BiLSTM)... 为实现柔性直流(voltage sourced converter-high voltage direct current,VSC-HVDC)换流阀冷却系统入阀水温的智能预测,文中提出一种基于随机森林(random forest,RF)和双向长短时记忆(bi-directional long short-term memory,BiLSTM)网络混合的柔直换流阀冷却系统入阀水温的预测模型,并以此为基础对柔直换流站阀冷系统的冷却能力进行评估。首先,采用RF算法对由阀冷系统监测变量组成的高维特征集进行重要性分析,筛选出影响入阀水温的重要特征,与历史入阀水温构成输入特征向量。然后,将特征向量输入到BiLSTM预测模型,对模型进行训练并实现对入阀水温的准确预测和冷却能力定量评估。最后,以广东电网某柔直换流站为实例对所提方法进行分析,验证了所提出的基于RF-BiLSTM的混合模型预测精度优于BiLSTM模型、RF模型、支持向量机(support vector machine,SVM)模型和自回归滑动平均模型(auto-regressive and moving average,ARMA)模型,并且实现了冷却能力的定量评估。结果表明该换流站冷却裕量达98%,存在过度冷却、能源浪费的问题,与换流站现场运行情况相符,验证了文中所提方法的有效性和准确性。 展开更多
关键词 柔直阀冷系统 机器学习 随机森林(RF)算法 双向长短时记忆(bilstm)网络 入阀水温预测 冷却能力评估
下载PDF
基于Bo-BiLSTM网络的IGBT老化失效预测方法 被引量:1
19
作者 万庆祝 于佳松 +1 位作者 佟庆彬 闵现娟 《电气技术》 2024年第3期1-10,共10页
针对绝缘栅双极型晶体管(IGBT)受热应力冲击后对其进行老化失效预测精度不高的情况,提出一种基于贝叶斯优化(Bo)-双向长短期记忆(BiLSTM)网络的IGBT老化失效预测方法。首先分析IGBT模块老化失效原理,然后基于NASA老化实验数据集建立失... 针对绝缘栅双极型晶体管(IGBT)受热应力冲击后对其进行老化失效预测精度不高的情况,提出一种基于贝叶斯优化(Bo)-双向长短期记忆(BiLSTM)网络的IGBT老化失效预测方法。首先分析IGBT模块老化失效原理,然后基于NASA老化实验数据集建立失效特征数据库,最后利用Matlab软件构造Bo-BiLSTM网络预测失效特征参数数据。选取常用回归预测性能评估指标将长短期记忆(LSTM)网络模型、BiLSTM网络模型与Bo-BiLSTM网络模型的预测结果进行对比分析。结果表明,Bo-BiLSTM网络的模型拟合精度更高,基于Bo-BiLSTM网络的IGBT老化失效预测方法具有较好的预测效果,能够应用于IGBT的失效预测。 展开更多
关键词 绝缘栅双极型晶体管(IGBT) 贝叶斯优化 双向长短期记忆(bilstm)网络 老化失效预测
下载PDF
一种无源被动室内区域定位方法的研究 被引量:5
20
作者 李若南 李金宝 《计算机研究与发展》 EI CSCD 北大核心 2020年第7期1381-1392,共12页
室内区域定位在医疗养老、智慧大楼等领域有着广泛的应用.室内区域定位中最突出的问题是无线电信道效应的动态和不可预测性(如多径传播、信道衰落等)对接收信号强度(received signal strength, RSS)的干扰影响.为了降低无线电的干扰,提... 室内区域定位在医疗养老、智慧大楼等领域有着广泛的应用.室内区域定位中最突出的问题是无线电信道效应的动态和不可预测性(如多径传播、信道衰落等)对接收信号强度(received signal strength, RSS)的干扰影响.为了降低无线电的干扰,提出了一种新的基于注意力机制的CNN-BiLSTM的室内区域定位模型,该模型通过捕获粗细粒度特征与定位区域的对应关系来减弱RSS序列对信道变化的依赖.首先,利用卷积神经网络(convolutional neural network, CNN)学习捕捉RSS序列的特征来抽取区域中心点的细粒度特征.然后,利用双向长短时记忆(bidirectional long short-term memory, BiLSTM)网络的存储记忆特性,学习当前与过去RSS序列中隐含区域范围的粗粒度特征.最后,利用注意力机制,通过融合粗细粒度特征,建立RSS序列特征与区域位置的映射关系,获取区域位置信息.真实室内环境下区域定位的实验结果表明,与目前定位效果最好的网格区域综合概率定位模型相比,提出的方法在降低计算复杂度的同时提高了区域定位的准确度和对环境的适应能力. 展开更多
关键词 室内区域定位 注意力机制 接收信号强度 卷积神经网络 双向长短时记忆网络
下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部