【目的】以干酪乳杆菌典型株ATCC 393TM(Lactobacillus casei ATCC 393TM)为实验菌株,研究其在多重胁迫环境下的交互保护应答机制。【方法】比较不同亚适应条件(热、H2O2、酸、胆盐)处理后菌体细胞在热致死条件(>60℃)及氧致死条件H2...【目的】以干酪乳杆菌典型株ATCC 393TM(Lactobacillus casei ATCC 393TM)为实验菌株,研究其在多重胁迫环境下的交互保护应答机制。【方法】比较不同亚适应条件(热、H2O2、酸、胆盐)处理后菌体细胞在热致死条件(>60℃)及氧致死条件H2O2(>5mmol/L)下的存活率变化,并集中考察了最佳亚适应条件-酸适应的不同处理方式对细胞交互保护存活率、胞内pH以及脂肪酸含量的影响。【结果】交互保护对干酪乳杆菌ATCC393生理活性的影响因亚适应及致死条件而异:酸胁迫预适应能够显著提高细胞的交互胁迫抗性,其中,盐酸预适应的交互保护效果优于乳酸,其预适应引发的生理应答效应使细胞在应对热致死和氧致死胁迫时存活率分别提高了305倍和173倍;进一步的研究表明,酸预适应提高细胞存活率的作用机制可能与其能够显著改善胁迫环境下的胞内pH和细胞膜脂肪酸不饱和度相关。【结论】盐酸预适应对干酪乳杆菌典型株ATCC393的交互保护作用最为显著,并能够维持胁迫条件下细胞生理状态的相对稳定,本研究将有助于进一步解析干酪乳杆菌在对抗不同胁迫环境的过程中生理应答机制间的相互作用关系。展开更多
[ Objective] The aim of this study was to determine the effects of dietary phospholipids on Na+ - K+ - ATPase activity and cell mem- brane fatty acid composition in the gill of catfish (Pangasius sutchi). [Method]...[ Objective] The aim of this study was to determine the effects of dietary phospholipids on Na+ - K+ - ATPase activity and cell mem- brane fatty acid composition in the gill of catfish (Pangasius sutchi). [Method] 900 healthy catfish (1.4 ±0.08 g of average weight) were randomly divided into five groups. Dietary phospholipids level of group PL0 was 0%, and 1%, 2%, 3%, 4% for group PL1, PL2, PL3, PL4, respectively. The experiment lasted for 56 days. [Result] The results showed that the Na+ -K+ -ATPase activity in gill decreased gradually with the increase of the dietary phospholipids level ( P 〈0.05). Cell membrane fatty acid composition was affected significantly by dietary phospholipids. The content of saturated fatty acids and monounsaturated fatty acids of group PLO was the highest ( P 〈 0.05), however, it had the lowest content of highlyunsatu- rated fatty acids ( P 〈 0.05). The content of polyunsaturated fatty acids of group 3 was higher than group 0 and group 1 ( P 〈 0.05). E Conclusion] The results indicated that there is obvious compensation effects on Na+ -K+ -ATPase activity with phospholipids content changes in gills of catfish ( Pangasius sutchi) to maintain stable physiological level and normal basal metabolism and the increase of HUFA and ∑PUFA is necessary for gill cell membrane to better maintain and perform normal physiological function.展开更多
文摘【目的】以干酪乳杆菌典型株ATCC 393TM(Lactobacillus casei ATCC 393TM)为实验菌株,研究其在多重胁迫环境下的交互保护应答机制。【方法】比较不同亚适应条件(热、H2O2、酸、胆盐)处理后菌体细胞在热致死条件(>60℃)及氧致死条件H2O2(>5mmol/L)下的存活率变化,并集中考察了最佳亚适应条件-酸适应的不同处理方式对细胞交互保护存活率、胞内pH以及脂肪酸含量的影响。【结果】交互保护对干酪乳杆菌ATCC393生理活性的影响因亚适应及致死条件而异:酸胁迫预适应能够显著提高细胞的交互胁迫抗性,其中,盐酸预适应的交互保护效果优于乳酸,其预适应引发的生理应答效应使细胞在应对热致死和氧致死胁迫时存活率分别提高了305倍和173倍;进一步的研究表明,酸预适应提高细胞存活率的作用机制可能与其能够显著改善胁迫环境下的胞内pH和细胞膜脂肪酸不饱和度相关。【结论】盐酸预适应对干酪乳杆菌典型株ATCC393的交互保护作用最为显著,并能够维持胁迫条件下细胞生理状态的相对稳定,本研究将有助于进一步解析干酪乳杆菌在对抗不同胁迫环境的过程中生理应答机制间的相互作用关系。
基金supported by Guangxi Natural Science Foundation(2012GXNSFBA053053)The"Twelfth Five-Year"National Science and Technology Support Program ( 2012BAD25B04)Guangxi University"Student Innovation Training Program"(201152)
文摘[ Objective] The aim of this study was to determine the effects of dietary phospholipids on Na+ - K+ - ATPase activity and cell mem- brane fatty acid composition in the gill of catfish (Pangasius sutchi). [Method] 900 healthy catfish (1.4 ±0.08 g of average weight) were randomly divided into five groups. Dietary phospholipids level of group PL0 was 0%, and 1%, 2%, 3%, 4% for group PL1, PL2, PL3, PL4, respectively. The experiment lasted for 56 days. [Result] The results showed that the Na+ -K+ -ATPase activity in gill decreased gradually with the increase of the dietary phospholipids level ( P 〈0.05). Cell membrane fatty acid composition was affected significantly by dietary phospholipids. The content of saturated fatty acids and monounsaturated fatty acids of group PLO was the highest ( P 〈 0.05), however, it had the lowest content of highlyunsatu- rated fatty acids ( P 〈 0.05). The content of polyunsaturated fatty acids of group 3 was higher than group 0 and group 1 ( P 〈 0.05). E Conclusion] The results indicated that there is obvious compensation effects on Na+ -K+ -ATPase activity with phospholipids content changes in gills of catfish ( Pangasius sutchi) to maintain stable physiological level and normal basal metabolism and the increase of HUFA and ∑PUFA is necessary for gill cell membrane to better maintain and perform normal physiological function.