采用膜电容去离子技术,对镇江自来水进行处理。确定膜电容去离子装置所需的各种材料,设计并制作复合电极单元。将5个复合电极处理单元串联并进行实验,确定能适应市场需求的装置参数,包括内部结构参数和外部运行参数。实验结果表明,当装...采用膜电容去离子技术,对镇江自来水进行处理。确定膜电容去离子装置所需的各种材料,设计并制作复合电极单元。将5个复合电极处理单元串联并进行实验,确定能适应市场需求的装置参数,包括内部结构参数和外部运行参数。实验结果表明,当装置的活性炭纤维比表面积为1 600 m2/g,电极间距为1.5 mm,电压为2.0 V时,处理效果较好。流量为350 m L/min时复合电极装置的处理效果比100 m L/min差,但是更符合市场需求。一定范围内的温度变化对该装置去除效果的影响很小。将复合电极单元数从5个增至40个后,离子去除率由12.73%增至62.32%。展开更多
以石墨带为电极材料,研究了工作电压、进料流量和隔网厚度等工艺条件对电容法脱盐(CDI)性能的影响。结果表明:工作电压由0.8 V增加至2.0 V时,脱盐率和质量比吸附量先增加然后趋于稳定;进料流量由48 m L/min增加至238 m L/min时,脱盐率...以石墨带为电极材料,研究了工作电压、进料流量和隔网厚度等工艺条件对电容法脱盐(CDI)性能的影响。结果表明:工作电压由0.8 V增加至2.0 V时,脱盐率和质量比吸附量先增加然后趋于稳定;进料流量由48 m L/min增加至238 m L/min时,脱盐率和质量比吸附量先增加后减小;隔网厚度由0增加至1.8 mm时,质量比吸附量先减小后增加。在电压1.6 V、进料流量142m L/min、隔网厚度1.8 mm时,CDI脱盐性能较好。在上述相同的工艺条件下,对CDI与膜电容法脱盐(MCDI)进行了对比研究。结果表明:在第1个循环的吸附阶段,MCDI脱盐率和电流效率分别比CDI增加了31.68%和36.16%;16 h循环吸脱附实验后,MCDI再生率为99.01%。表明MCDI比CDI具有更好的脱盐性能和再生性能。展开更多
Water and energy shortages came due to rapid population growth, living standards and rapid development in the agriculture and industrial sectors. Desalination tends to be one of the most promising water solutions;howe...Water and energy shortages came due to rapid population growth, living standards and rapid development in the agriculture and industrial sectors. Desalination tends to be one of the most promising water solutions;however, it is a process of intense energy. Membrane Capacitive Deionization (MCDI) has received considerable interest as a promising desalination technology, and MCDI research has increased significantly over the last 10 years. In addition, there are no guidelines for the design of Capacitive Deionization (CDI) implementation strategies for individual applications. This study, therefore;provides an alternative of CDI’s recent application developments, with emphasis placed on hybrid systems to address the technological needs of different relevant fields. The MCDI’s energy consumption is compared with the reverse osmosis literature data based on experimental data from laboratory-scale system. The study demonstrates that MCDI technology is a promising technology in the next few years with an extreme competition in water recovery, energy consumption and salt removal for reverse osmosis.展开更多
The adsorption and desorption behavior of Cr(Ⅵ) in membrane capacitive deionization(MCDI) was investigated systematically in the presence of bovine serum albumin(BSA) and KCl with different concentrations, respective...The adsorption and desorption behavior of Cr(Ⅵ) in membrane capacitive deionization(MCDI) was investigated systematically in the presence of bovine serum albumin(BSA) and KCl with different concentrations, respectively. Results revealed that Cr(Ⅵ) absorption was enhanced and the adsorption amount for Cr(Ⅵ) increased from 155.7 to 190.8 mg/g when KCl concentration increased from 100 to 200 mg/L in the adsorption process, which was attributed to the stronger driving force. However, the adsorption amount sharply decreased to 90.2 mg/g when KCl concentration reached up to 1000 mg/L suggesting the negative effect for Cr(Ⅵ) removal that high KCl concentration had. As for the effect of BSA on ion adsorption, the amount for Cr(Ⅵ) significantly declined to 78.3 mg/g and p H was found to be an important factor contributing to this significant reduction. Then, the desorption performance was also conducted and it was obtained that the presence of KCl had negligible effect on Cr(Ⅵ) desorption, while promoted by the addition of BSA. The incomplete desorption was obtained and the residual chromium ions onto the electrode after desorption was detected via energy-dispersive X-ray spectroscopy(EDS). Based on above analysis, the enhanced removal mechanism for Cr(Ⅵ) in MCDI was found to be consisted of ion adsorption onto electrode surface, the redox reaction of Cr(Ⅵ) into Cr(III)and precipitation, which was demonstrated by X-ray photoelectron spectroscopy(XPS) and scanning electron microscope(SEM).展开更多
以NaCl溶液为除盐对象,采用控制变量法,考察电压、流量、温度和进水浓度对膜/电容脱盐(MCDI)除盐效果的影响以及再生方式对MCDI再生效果的影响.结果表明:MCDI的除盐率随电压和温度的升高而增大,随进水流量和浓度的增大而减小;综合考...以NaCl溶液为除盐对象,采用控制变量法,考察电压、流量、温度和进水浓度对膜/电容脱盐(MCDI)除盐效果的影响以及再生方式对MCDI再生效果的影响.结果表明:MCDI的除盐率随电压和温度的升高而增大,随进水流量和浓度的增大而减小;综合考虑除盐率和能量利用效率,在电压1.2 V、流量5.0-7.5 m L·min-1、温度20-25℃、浓度50-250 mg·L-1时,MCDI的除盐性能最佳;再生时,反接方式再生效率最高但耗能大,断路方式几乎无再生效果,短接方式再生效率良好且无耗能,综合考虑短接方式最佳.展开更多
文摘采用膜电容去离子技术,对镇江自来水进行处理。确定膜电容去离子装置所需的各种材料,设计并制作复合电极单元。将5个复合电极处理单元串联并进行实验,确定能适应市场需求的装置参数,包括内部结构参数和外部运行参数。实验结果表明,当装置的活性炭纤维比表面积为1 600 m2/g,电极间距为1.5 mm,电压为2.0 V时,处理效果较好。流量为350 m L/min时复合电极装置的处理效果比100 m L/min差,但是更符合市场需求。一定范围内的温度变化对该装置去除效果的影响很小。将复合电极单元数从5个增至40个后,离子去除率由12.73%增至62.32%。
文摘Water and energy shortages came due to rapid population growth, living standards and rapid development in the agriculture and industrial sectors. Desalination tends to be one of the most promising water solutions;however, it is a process of intense energy. Membrane Capacitive Deionization (MCDI) has received considerable interest as a promising desalination technology, and MCDI research has increased significantly over the last 10 years. In addition, there are no guidelines for the design of Capacitive Deionization (CDI) implementation strategies for individual applications. This study, therefore;provides an alternative of CDI’s recent application developments, with emphasis placed on hybrid systems to address the technological needs of different relevant fields. The MCDI’s energy consumption is compared with the reverse osmosis literature data based on experimental data from laboratory-scale system. The study demonstrates that MCDI technology is a promising technology in the next few years with an extreme competition in water recovery, energy consumption and salt removal for reverse osmosis.
基金financially supported by the National Natural Science Fund of China (No. 51508153)the Natural Science Fund of Jiangsu (No. BK20150813)+1 种基金the Fundamental Research Funds for the Central UniversitiesA Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘The adsorption and desorption behavior of Cr(Ⅵ) in membrane capacitive deionization(MCDI) was investigated systematically in the presence of bovine serum albumin(BSA) and KCl with different concentrations, respectively. Results revealed that Cr(Ⅵ) absorption was enhanced and the adsorption amount for Cr(Ⅵ) increased from 155.7 to 190.8 mg/g when KCl concentration increased from 100 to 200 mg/L in the adsorption process, which was attributed to the stronger driving force. However, the adsorption amount sharply decreased to 90.2 mg/g when KCl concentration reached up to 1000 mg/L suggesting the negative effect for Cr(Ⅵ) removal that high KCl concentration had. As for the effect of BSA on ion adsorption, the amount for Cr(Ⅵ) significantly declined to 78.3 mg/g and p H was found to be an important factor contributing to this significant reduction. Then, the desorption performance was also conducted and it was obtained that the presence of KCl had negligible effect on Cr(Ⅵ) desorption, while promoted by the addition of BSA. The incomplete desorption was obtained and the residual chromium ions onto the electrode after desorption was detected via energy-dispersive X-ray spectroscopy(EDS). Based on above analysis, the enhanced removal mechanism for Cr(Ⅵ) in MCDI was found to be consisted of ion adsorption onto electrode surface, the redox reaction of Cr(Ⅵ) into Cr(III)and precipitation, which was demonstrated by X-ray photoelectron spectroscopy(XPS) and scanning electron microscope(SEM).
文摘以NaCl溶液为除盐对象,采用控制变量法,考察电压、流量、温度和进水浓度对膜/电容脱盐(MCDI)除盐效果的影响以及再生方式对MCDI再生效果的影响.结果表明:MCDI的除盐率随电压和温度的升高而增大,随进水流量和浓度的增大而减小;综合考虑除盐率和能量利用效率,在电压1.2 V、流量5.0-7.5 m L·min-1、温度20-25℃、浓度50-250 mg·L-1时,MCDI的除盐性能最佳;再生时,反接方式再生效率最高但耗能大,断路方式几乎无再生效果,短接方式再生效率良好且无耗能,综合考虑短接方式最佳.