Medium strength aluminium alloy (Al-Mg-Si alloy) has gathered wide acceptance in the fabrication of light weight structures requiring a high strength-to weight ratio, such as transportable bridge girders, military v...Medium strength aluminium alloy (Al-Mg-Si alloy) has gathered wide acceptance in the fabrication of light weight structures requiring a high strength-to weight ratio, such as transportable bridge girders, military vehicles, road tankers and railway transport systems. The preferred welding process for aluminium alloy is frequently TIG (tungsten inert gas) welding due to its comparatively easier applicability and better economy.In the case of single pass TIG welding of thinner section of this alloy, the pulsed current has been found beneficial due to its advantages over the conventional continuous current process. The use of pulsed current parameters has been found to improve the mechanical properties of the welds compared to those of continuous current welds of this alloy due to grain refinement occurring in the fusion zone. A mathematical model has been developed to predict pitting corrosion potential of pulsed current TIG welded AA6061 aluminium alloy.Factorial experimental design has been used to optimize the experimental conditions. Analysis of variance technique has been used to find out the significant pulsed current parameters. Regression analysis has been used to develop the model. Using the developed model pitting corrosion potential values have been estimated for different combinations of pulsed current parameters and the results are analyzed in detail.展开更多
In this paper a possible mechanism of current in medium is presented. Comparison between this current and the magnetization current was made. Expression for this current was derived. This work is helpful to understand...In this paper a possible mechanism of current in medium is presented. Comparison between this current and the magnetization current was made. Expression for this current was derived. This work is helpful to understanding the interaction between medium and electromagnetic wave.展开更多
The Accelerator Driven Sub-critical System (ADS) is under development aiming at safe disposal of nuclear waste and providing electric power in China. The main accelerator of ADS is composed of two injector sections ...The Accelerator Driven Sub-critical System (ADS) is under development aiming at safe disposal of nuclear waste and providing electric power in China. The main accelerator of ADS is composed of two injector sections and one main linear acceleration section. The 650 MHz β=0.82 superconducting cavities will be adopted to accelerate the proton bunches from 360 MeV to 1.5 GeV in the medium energy section. This paper presents the study and design results of this kind of superconducting cavity.展开更多
In this paper, an investigation of the effects of some physical parameters and Hall current on magneto hydrodynamics (MHD) fluid flow with heat flux over a porous medium was carefully examined, taking into considerati...In this paper, an investigation of the effects of some physical parameters and Hall current on magneto hydrodynamics (MHD) fluid flow with heat flux over a porous medium was carefully examined, taking into consideration Hall effects where the temperature and concentration are assumed to be oscillating with time. Furthermore, perturbation method is used in solving the governing equations. The profiles of velocity, temperature and concentration are presented graphically, going into the problem the primary and secondary velocity are presented and compute for some physical parameters such as mass Grashof number (<em>Gc</em>), Schmidt number <em>Sc</em>, Prandtl number (<em>Pr</em>) viscoelastic parameter (<em>K</em><sub>1</sub>) and hall current parameter (<em>m</em>). Results indicated that primary velocity increases with increase in values of <em>Gc</em> on one hand and on the other hand it decreases with increase in the values of <em>Pr</em>, <em>K</em><sub>1</sub> and <em>m</em>. Secondary velocity demonstrated opposite trend.展开更多
A coordinated physicomathematical model for the propagation of a soliton-like electromagnetic pulse in a heterogeneous medium is developed in the presence of strong discontinuities in the electromagnetic field. The mo...A coordinated physicomathematical model for the propagation of a soliton-like electromagnetic pulse in a heterogeneous medium is developed in the presence of strong discontinuities in the electromagnetic field. The model is based on the reduction of Maxwell’s equations to the well-studied wave equation. When the electromagnetic pulse was specified, its amplitude modulation was taken into account, as was the nonstationary broadening of the spectral line. Conditions for matching the momentum for the first initial boundary-value problem are obtained. The time dispersion of the electrical induction is taken into account in terms of the function of signal conditioning which takes account of the broadening of its spectral line and integration over the continuous spectrum. With this approach, it is not necessary to neglect spatial derivatives, and also to use spatial nonlocal relations to take account of the effect of surface charge, surface current, and spatial dispersion of electrical induction at the interfaces of adjacent media.展开更多
This paper,the kinetic equation,traction force,and braking force for railway trains are reviewed.In addition,the driving characteristics are interpreted as to how the power of the electric vehicle relates to the weigh...This paper,the kinetic equation,traction force,and braking force for railway trains are reviewed.In addition,the driving characteristics are interpreted as to how the power of the electric vehicle relates to the weight,speed,track curve,and track gradient of the electric vehicle.The driving characteristics of these trains are analyzed through PSCAD/EMTDC(power systems computer aided design/electromagnetic transients including DC)modeling.展开更多
Inductively coupled channels are based on the electromagnetic induction principle and realize long-distance current signal transmission through seawater.Due to a few difficulties in performing actual experiments,it is...Inductively coupled channels are based on the electromagnetic induction principle and realize long-distance current signal transmission through seawater.Due to a few difficulties in performing actual experiments,it is unclear how the seawater medium affects the frequency selectivity of the current signal.In this paper,a dual dipole model of the inductively coupled seawater transmission channel is established for the traditional short-distance current field transmission mode.The transmission characteristics of electrical signals in seawater are theoretically derived.A platform is used to measure the amplitude-frequency and phase-frequency characteristics of the current signal transmission in seawater with transmission frequencies ranging from 30 kHz to 1 MHz,and transmission distances in the vertical range of 4 m.The COMSOL Multiphysics simulation and practical test analysis are carried out to analyze the frequency selectivity of seawater conductivity.It is proved that the seawater resistance increases as the frequency increases,which is the key problem that affects the current signal.This study provides an important theoretical support and experimental evidence for improving the transmission performance of long-distance underwater current signals.展开更多
文摘Medium strength aluminium alloy (Al-Mg-Si alloy) has gathered wide acceptance in the fabrication of light weight structures requiring a high strength-to weight ratio, such as transportable bridge girders, military vehicles, road tankers and railway transport systems. The preferred welding process for aluminium alloy is frequently TIG (tungsten inert gas) welding due to its comparatively easier applicability and better economy.In the case of single pass TIG welding of thinner section of this alloy, the pulsed current has been found beneficial due to its advantages over the conventional continuous current process. The use of pulsed current parameters has been found to improve the mechanical properties of the welds compared to those of continuous current welds of this alloy due to grain refinement occurring in the fusion zone. A mathematical model has been developed to predict pitting corrosion potential of pulsed current TIG welded AA6061 aluminium alloy.Factorial experimental design has been used to optimize the experimental conditions. Analysis of variance technique has been used to find out the significant pulsed current parameters. Regression analysis has been used to develop the model. Using the developed model pitting corrosion potential values have been estimated for different combinations of pulsed current parameters and the results are analyzed in detail.
文摘In this paper a possible mechanism of current in medium is presented. Comparison between this current and the magnetization current was made. Expression for this current was derived. This work is helpful to understanding the interaction between medium and electromagnetic wave.
文摘The Accelerator Driven Sub-critical System (ADS) is under development aiming at safe disposal of nuclear waste and providing electric power in China. The main accelerator of ADS is composed of two injector sections and one main linear acceleration section. The 650 MHz β=0.82 superconducting cavities will be adopted to accelerate the proton bunches from 360 MeV to 1.5 GeV in the medium energy section. This paper presents the study and design results of this kind of superconducting cavity.
文摘In this paper, an investigation of the effects of some physical parameters and Hall current on magneto hydrodynamics (MHD) fluid flow with heat flux over a porous medium was carefully examined, taking into consideration Hall effects where the temperature and concentration are assumed to be oscillating with time. Furthermore, perturbation method is used in solving the governing equations. The profiles of velocity, temperature and concentration are presented graphically, going into the problem the primary and secondary velocity are presented and compute for some physical parameters such as mass Grashof number (<em>Gc</em>), Schmidt number <em>Sc</em>, Prandtl number (<em>Pr</em>) viscoelastic parameter (<em>K</em><sub>1</sub>) and hall current parameter (<em>m</em>). Results indicated that primary velocity increases with increase in values of <em>Gc</em> on one hand and on the other hand it decreases with increase in the values of <em>Pr</em>, <em>K</em><sub>1</sub> and <em>m</em>. Secondary velocity demonstrated opposite trend.
文摘A coordinated physicomathematical model for the propagation of a soliton-like electromagnetic pulse in a heterogeneous medium is developed in the presence of strong discontinuities in the electromagnetic field. The model is based on the reduction of Maxwell’s equations to the well-studied wave equation. When the electromagnetic pulse was specified, its amplitude modulation was taken into account, as was the nonstationary broadening of the spectral line. Conditions for matching the momentum for the first initial boundary-value problem are obtained. The time dispersion of the electrical induction is taken into account in terms of the function of signal conditioning which takes account of the broadening of its spectral line and integration over the continuous spectrum. With this approach, it is not necessary to neglect spatial derivatives, and also to use spatial nonlocal relations to take account of the effect of surface charge, surface current, and spatial dispersion of electrical induction at the interfaces of adjacent media.
基金supported by the Korea Institute of Energy Technology Evaluation and Planning(KETEP)and the Ministry of Trade,Industry&Energy(MOTIE)of the Republic of Korea(No.20225500000110).
文摘This paper,the kinetic equation,traction force,and braking force for railway trains are reviewed.In addition,the driving characteristics are interpreted as to how the power of the electric vehicle relates to the weight,speed,track curve,and track gradient of the electric vehicle.The driving characteristics of these trains are analyzed through PSCAD/EMTDC(power systems computer aided design/electromagnetic transients including DC)modeling.
文摘Inductively coupled channels are based on the electromagnetic induction principle and realize long-distance current signal transmission through seawater.Due to a few difficulties in performing actual experiments,it is unclear how the seawater medium affects the frequency selectivity of the current signal.In this paper,a dual dipole model of the inductively coupled seawater transmission channel is established for the traditional short-distance current field transmission mode.The transmission characteristics of electrical signals in seawater are theoretically derived.A platform is used to measure the amplitude-frequency and phase-frequency characteristics of the current signal transmission in seawater with transmission frequencies ranging from 30 kHz to 1 MHz,and transmission distances in the vertical range of 4 m.The COMSOL Multiphysics simulation and practical test analysis are carried out to analyze the frequency selectivity of seawater conductivity.It is proved that the seawater resistance increases as the frequency increases,which is the key problem that affects the current signal.This study provides an important theoretical support and experimental evidence for improving the transmission performance of long-distance underwater current signals.