BACKGROUND Stress-induced gastric ulcer(SGU) is one of the most common visceral complications after trauma. Restraint water-immersion stress(RWIS) can cause serious gastrointestinal dysfunction and has been widely use...BACKGROUND Stress-induced gastric ulcer(SGU) is one of the most common visceral complications after trauma. Restraint water-immersion stress(RWIS) can cause serious gastrointestinal dysfunction and has been widely used to study the pathogenesis of SGU to identify medications that can cure the disease. The mediodorsal thalamic nucleus(MD) is the centre integrating visceral and physical activity and contributes to SGU induced by RWIS. Hence, the role of the MD during RWIS needs to be studied.AIM To screen for differentially expressed proteins in the MD of the RWIS rats to further elucidate molecular mechanisms of SGU.METHODS Male Wistar rats were selected randomly and divided into two groups, namely, a control group and an RWIS group. Gastric mucosal lesions of the sacrificed rats were measured using the erosion index and the proteomic profiles of the MD were generated through isobaric tags for relative and absolute quantitation(iTRAQ) coupled with two-dimensional liquid chromatography and tandem mass spectrometry. Additionally, iTRAQ results were verified by Western blot analysis.RESULTS A total of 2853 proteins were identified, and these included 65 dysregulated(31 upregulated and 34 downregulated) proteins(fold change ratio ≥ 1.2). Gene Ontology(GO) analysis showed that most of the upregulated proteins are primarily related to cell division, whereas most of the downregulated proteins are related to neuron morphogenesis and neurotransmitter regulation. Ingenuity Pathway Analysis revealed that the dysregulated proteins are mainly involved in the neurological disease signalling pathways. Furthermore, our results indicated that glycogen synthase kinase-3 beta might be related to the central mechanismthrough which RWIS gives rise to SGU.CONCLUSION Quantitative proteomic analysis elucidated the molecular targets associated with the production of SGU and provides insights into the role of the MD. The underlying molecular mechanisms need to be further dissected.展开更多
The dysfunction of the medial prefrontal cortex is associated with affective disorders and non-motor features in Parkinson’s disease.However,the exact role of the mediodorsal thalamic nucleus in the function of the p...The dysfunction of the medial prefrontal cortex is associated with affective disorders and non-motor features in Parkinson’s disease.However,the exact role of the mediodorsal thalamic nucleus in the function of the prefrontal cortex remains unclear.To study the possible effects of the mediodorsal thalamic nucleus on the neurological function of the medial prefrontal cortex,a model of Parkinson’s disease was established by injecting 8μg 6-hydroxydopamine into the substantia nigra compacta of rats.After 1 or 3 weeks,0.3μg ibotenic acid was injected into the mediodorsal thalamic nucleus of the midbrain.At 3 or 5 weeks after the initial injury,neuronal discharge in medial prefrontal cortex of rat brain was determined electrophysiologically.The numbers of dopamine-positive neurons and tyrosine hydroxylase immunoreactivity in substantia nigra compacta and ventral tegmental area were detected by immunohistochemical staining.Results demonstrated that after injury,the immunoreactivity of dopamine neurons and tyrosine hydroxylase decreased in the substantia nigra compacta and ventral tegmental areas of rats.Compared with normal medial prefrontal cortical neurons,at 3 and 5 weeks after substantia nigra compacta injury,the discharge frequency of pyramidal neurons increased and the discharge pattern of these neurons tended to be a burst-discharge,with an increased discharge interval.The discharge frequency of interneurons decreased and the discharge pattern also tended to be a burst-discharge,but the discharge interval was only higher at 3 weeks.At 3 weeks after the combined lesions,the discharge frequency,discharge pattern and discharge interval were restored to a normal level in pyramidal neurons and interneurons in medial prefrontal cortex.These findings have confirmed that mediodorsal thalamic nucleus is involved in regulating neuronal activities of the medial prefrontal cortex.The changes in the function of the mediodorsal thalamic nucleus may be associated with the abnormal discharge activity of the medial prefron展开更多
Objective To observe the distribution of acetylcholinesterase activity in the thalamus of the monkey.Methods Histochemical method was used to detect the acetylcholinesterase activity in the thalamus.Results Acetylchol...Objective To observe the distribution of acetylcholinesterase activity in the thalamus of the monkey.Methods Histochemical method was used to detect the acetylcholinesterase activity in the thalamus.Results Acetylcholinesterase was found to be inhomogeneous distribution in the primate thalamus and to reveal previously uncovered inhomogeneity within certain thalamic nuclei and their subdivisions. The medial, ventral and posterior nuclear groups displayed markedly uneven acetylcholinesterase reaction.In the mediodorsal nucleus,three distinct sbudivisions were revealed by acetylcholinesterase histochemistry, medial magnocellular part, ventral sector of central parvicellular part and dorsolateral sector of lateral pars multiformity showed weak, moderate and strong acetylcholinesterase activity, respectively. In the ventral nuclear group, acetylcholinesterase histochemistry was strong in the medial part of ventral posterior nucleus, moderate in the magnocellular part of ventral anterior, caudal, medial, oral and pars postrema parts of ventral lateral nucleus, as well as lateral part of ventral posterior nucleus, poor and weak in the inferior part of ventral posterior nucleus, par compacta of the medial part of ventral posterior nucleus and parvicellular part of ventral anterior nucleus. In the pulvinar nucleus, acetylcholinesterase reaction ranged from weak, moderate to strong in the parts of the oral, medial and lateral, as well as inferior of this nucleus, respectively. Regional variations of acetylcholinesterase activity within the thalamic nuclei and their subdivisions can help to identify them by acetylcholinesterase histochemistry. In addition, the dark patches of strong acetylcholinesterase activity contrasting with a lighter surrounding matrix were revealed within the parvicellular part and pars multiformis of mediodorsal nucleus, paracentral nucleus, central lateral nucleus, pars postrema part of ventral lateral nucleus and medial habenula nucleus, as well as medial part of pulvinar necleus, respectively.Conc展开更多
基金Supported by National Natural Science Foundation of China,No.31501861Natural Science Foundation of Shandong Province,China,No.ZR2015CM013
文摘BACKGROUND Stress-induced gastric ulcer(SGU) is one of the most common visceral complications after trauma. Restraint water-immersion stress(RWIS) can cause serious gastrointestinal dysfunction and has been widely used to study the pathogenesis of SGU to identify medications that can cure the disease. The mediodorsal thalamic nucleus(MD) is the centre integrating visceral and physical activity and contributes to SGU induced by RWIS. Hence, the role of the MD during RWIS needs to be studied.AIM To screen for differentially expressed proteins in the MD of the RWIS rats to further elucidate molecular mechanisms of SGU.METHODS Male Wistar rats were selected randomly and divided into two groups, namely, a control group and an RWIS group. Gastric mucosal lesions of the sacrificed rats were measured using the erosion index and the proteomic profiles of the MD were generated through isobaric tags for relative and absolute quantitation(iTRAQ) coupled with two-dimensional liquid chromatography and tandem mass spectrometry. Additionally, iTRAQ results were verified by Western blot analysis.RESULTS A total of 2853 proteins were identified, and these included 65 dysregulated(31 upregulated and 34 downregulated) proteins(fold change ratio ≥ 1.2). Gene Ontology(GO) analysis showed that most of the upregulated proteins are primarily related to cell division, whereas most of the downregulated proteins are related to neuron morphogenesis and neurotransmitter regulation. Ingenuity Pathway Analysis revealed that the dysregulated proteins are mainly involved in the neurological disease signalling pathways. Furthermore, our results indicated that glycogen synthase kinase-3 beta might be related to the central mechanismthrough which RWIS gives rise to SGU.CONCLUSION Quantitative proteomic analysis elucidated the molecular targets associated with the production of SGU and provides insights into the role of the MD. The underlying molecular mechanisms need to be further dissected.
基金supported by the Key Research Project of Science and Technology of Henan Province of China,No.14B180007(to LLF)the Development Project of Science and Technology of Luoyang Municipality of China,No.1401087A-5(to LLF)
文摘The dysfunction of the medial prefrontal cortex is associated with affective disorders and non-motor features in Parkinson’s disease.However,the exact role of the mediodorsal thalamic nucleus in the function of the prefrontal cortex remains unclear.To study the possible effects of the mediodorsal thalamic nucleus on the neurological function of the medial prefrontal cortex,a model of Parkinson’s disease was established by injecting 8μg 6-hydroxydopamine into the substantia nigra compacta of rats.After 1 or 3 weeks,0.3μg ibotenic acid was injected into the mediodorsal thalamic nucleus of the midbrain.At 3 or 5 weeks after the initial injury,neuronal discharge in medial prefrontal cortex of rat brain was determined electrophysiologically.The numbers of dopamine-positive neurons and tyrosine hydroxylase immunoreactivity in substantia nigra compacta and ventral tegmental area were detected by immunohistochemical staining.Results demonstrated that after injury,the immunoreactivity of dopamine neurons and tyrosine hydroxylase decreased in the substantia nigra compacta and ventral tegmental areas of rats.Compared with normal medial prefrontal cortical neurons,at 3 and 5 weeks after substantia nigra compacta injury,the discharge frequency of pyramidal neurons increased and the discharge pattern of these neurons tended to be a burst-discharge,with an increased discharge interval.The discharge frequency of interneurons decreased and the discharge pattern also tended to be a burst-discharge,but the discharge interval was only higher at 3 weeks.At 3 weeks after the combined lesions,the discharge frequency,discharge pattern and discharge interval were restored to a normal level in pyramidal neurons and interneurons in medial prefrontal cortex.These findings have confirmed that mediodorsal thalamic nucleus is involved in regulating neuronal activities of the medial prefrontal cortex.The changes in the function of the mediodorsal thalamic nucleus may be associated with the abnormal discharge activity of the medial prefron
文摘Objective To observe the distribution of acetylcholinesterase activity in the thalamus of the monkey.Methods Histochemical method was used to detect the acetylcholinesterase activity in the thalamus.Results Acetylcholinesterase was found to be inhomogeneous distribution in the primate thalamus and to reveal previously uncovered inhomogeneity within certain thalamic nuclei and their subdivisions. The medial, ventral and posterior nuclear groups displayed markedly uneven acetylcholinesterase reaction.In the mediodorsal nucleus,three distinct sbudivisions were revealed by acetylcholinesterase histochemistry, medial magnocellular part, ventral sector of central parvicellular part and dorsolateral sector of lateral pars multiformity showed weak, moderate and strong acetylcholinesterase activity, respectively. In the ventral nuclear group, acetylcholinesterase histochemistry was strong in the medial part of ventral posterior nucleus, moderate in the magnocellular part of ventral anterior, caudal, medial, oral and pars postrema parts of ventral lateral nucleus, as well as lateral part of ventral posterior nucleus, poor and weak in the inferior part of ventral posterior nucleus, par compacta of the medial part of ventral posterior nucleus and parvicellular part of ventral anterior nucleus. In the pulvinar nucleus, acetylcholinesterase reaction ranged from weak, moderate to strong in the parts of the oral, medial and lateral, as well as inferior of this nucleus, respectively. Regional variations of acetylcholinesterase activity within the thalamic nuclei and their subdivisions can help to identify them by acetylcholinesterase histochemistry. In addition, the dark patches of strong acetylcholinesterase activity contrasting with a lighter surrounding matrix were revealed within the parvicellular part and pars multiformis of mediodorsal nucleus, paracentral nucleus, central lateral nucleus, pars postrema part of ventral lateral nucleus and medial habenula nucleus, as well as medial part of pulvinar necleus, respectively.Conc
基金supported by the National Natural Science Foundation of China(No.31571098,32071026)Shanghai Municipal Science and Technology Major Project(No.2018SHZDZX01)+1 种基金ZJ LabShanghai Center for Brain Science and Brain-Inspired Technology。