Based on the introductions of a type of diaphragm-through connection between concrete-filled square steel tubular columns (CFSSTCs) and H-shaped steel beams,a finite element model of the connection is developed and us...Based on the introductions of a type of diaphragm-through connection between concrete-filled square steel tubular columns (CFSSTCs) and H-shaped steel beams,a finite element model of the connection is developed and used to investigate the seismic behavior of the connection.The results of the finite element model are validated by a set of cyclic loading tests.The cyclic loading tests and the finite element analyses indicate that the failure mode of the suggested connections is plastic hinge at the beam with inelastic rotation angle exceeding 0.04 rad.The suggested connections have sufficient strength,plastic deformation and energy dissipation capacity to be used in composite moment frames as beam-to-column rigid connections.展开更多
A computer-aided design model for a fixed partial denture was constructed and used in a finite element analysis to study the overall load sharing mechanism between the fixed partial denture and oral structures while t...A computer-aided design model for a fixed partial denture was constructed and used in a finite element analysis to study the overall load sharing mechanism between the fixed partial denture and oral structures while the denture base rested on the al- veolar ridge. To investigate the consequences of non-contact conditions, three additional models were generated incorporating a uniform clearance of 0.125 mm, 0.25 mm, and 0.5 mm, respectively. A 100 N static load located at the free end of the prosthesis was applied while the distal portion of the jaw was set fixed. The results show that whilst releasing the ridge almost entirely, the presence of the clearance drastically increased the load on the splinting teeth. A pull-out force on the canine tooth of about 44 N was computed, accompanied by a mesio-distal moment of about 500 N.cm. The combination of which was similar to the tooth extraction maneuver performed by the dentist. In contrast, the second premolar was found to bear a push-in force of almost 115 N. The first molar, though barely solicited in the contact condition, became substantially loaded in non-contact conditions, which validates the choice of sacrificing three teeth to support the denture.展开更多
基金Supported by National Natural Science Foundation of China(No.51268054)Natural Science Foundation of Tianjin(No.13JCQNJC07300)the foundation of Key Laboratory of Coast Civil Structure Safety(Tianjin University),Ministry of Education of China(No.2011-1)
文摘Based on the introductions of a type of diaphragm-through connection between concrete-filled square steel tubular columns (CFSSTCs) and H-shaped steel beams,a finite element model of the connection is developed and used to investigate the seismic behavior of the connection.The results of the finite element model are validated by a set of cyclic loading tests.The cyclic loading tests and the finite element analyses indicate that the failure mode of the suggested connections is plastic hinge at the beam with inelastic rotation angle exceeding 0.04 rad.The suggested connections have sufficient strength,plastic deformation and energy dissipation capacity to be used in composite moment frames as beam-to-column rigid connections.
文摘A computer-aided design model for a fixed partial denture was constructed and used in a finite element analysis to study the overall load sharing mechanism between the fixed partial denture and oral structures while the denture base rested on the al- veolar ridge. To investigate the consequences of non-contact conditions, three additional models were generated incorporating a uniform clearance of 0.125 mm, 0.25 mm, and 0.5 mm, respectively. A 100 N static load located at the free end of the prosthesis was applied while the distal portion of the jaw was set fixed. The results show that whilst releasing the ridge almost entirely, the presence of the clearance drastically increased the load on the splinting teeth. A pull-out force on the canine tooth of about 44 N was computed, accompanied by a mesio-distal moment of about 500 N.cm. The combination of which was similar to the tooth extraction maneuver performed by the dentist. In contrast, the second premolar was found to bear a push-in force of almost 115 N. The first molar, though barely solicited in the contact condition, became substantially loaded in non-contact conditions, which validates the choice of sacrificing three teeth to support the denture.