3D printing is widely adopted to quickly produce rock mass models with complex structures in batches,improving the consistency and repeatability of physical modeling.It is necessary to regulate the mechanical properti...3D printing is widely adopted to quickly produce rock mass models with complex structures in batches,improving the consistency and repeatability of physical modeling.It is necessary to regulate the mechanical properties of 3D-printed specimens to make them proportionally similar to natural rocks.This study investigates mechanical properties of 3D-printed rock analogues prepared by furan resin-bonded silica sand particles.The mechanical property regulation of 3D-printed specimens is realized through quantifying its similarity to sandstone,so that analogous deformation characteristics and failure mode are acquired.Considering similarity conversion,uniaxial compressive strength,cohesion and stress–strain relationship curve of 3D-printed specimen are similar to those of sandstone.In the study ranges,the strength of 3D-printed specimen is positively correlated with the additive content,negatively correlated with the sand particle size,and first increases then decreases with the increase of curing temperature.The regulation scheme with optimal similarity quantification index,that is the sand type of 70/140,additive content of 2.5‰and curing temperature of 81.6℃,is determined for preparing 3D-printed sandstone analogues and models.The effectiveness of mechanical property regulation is proved through uniaxial compression contrast tests.This study provides a reference for preparing rock-like specimens and engineering models using 3D printing technology.展开更多
激光粉末床熔融(laser powder bed fusion,LPBF)成形NiTi合金由于Ni元素的蒸发导致成分偏离粉末设计成分,而NiTi合金的形状记忆效应、超弹性等性能受Ni含量影响极大。因此有必要对不同Ni含量NiTi合金的LPBF成形性、显微组织以及力学性...激光粉末床熔融(laser powder bed fusion,LPBF)成形NiTi合金由于Ni元素的蒸发导致成分偏离粉末设计成分,而NiTi合金的形状记忆效应、超弹性等性能受Ni含量影响极大。因此有必要对不同Ni含量NiTi合金的LPBF成形性、显微组织以及力学性能开展研究。采用真空电极感应熔炼气雾化技术制备了Ni_(50.8)Ti、Ni_(51.0)Ti以及Ni_(51.5)Ti(原子分数,%)3种预合金粉末,研究其在不同工艺参数下的冶金缺陷、显微组织及力学性能的演化规律。结果表明,高Ni含量NiTi合金在LPBF成形过程中容易产生垂直于建造方向的裂纹,成形性较低Ni含量NiTi合金差。Ni_(51.5)Ti合金室温下的临界应力可达476 MPa,但断裂伸长率仅为2%;Ni_(50.8)Ti合金临界应力仅为122 MPa,断裂伸长率可达8%。展开更多
Metallic tin(Sn)foil is a promising candidate anode for lithium-ion batteries(LIBs)due to its metallurgical processability and high capacity.However,it suffers low initial Coulombic efficiency and inferior cycling sta...Metallic tin(Sn)foil is a promising candidate anode for lithium-ion batteries(LIBs)due to its metallurgical processability and high capacity.However,it suffers low initial Coulombic efficiency and inferior cycling stability due to its uneven alloying/dealloying reactions,large volume change and stress,and fast electrode structural degradation.Herein,we report an undulating LiSn electrode fabricated by a scalable two-step procedure involving mechanical lithography and chemical prelithiation of Sn foil.With the combination of experimental measurements and chemo-mechanical simulations,it was revealed the obtained undulating LiSn/Sn electrode could ensure better mechanical stability due to the pre-swelling state from Sn to Li x Sn and undulating structure of lithography in comparison with plane Sn,homogenize the electrochemical alloying/dealloying reactions due to the activated surface materials,and compensate Li loss during cycling due to the introduction of excess Li from Li_(x)Sn,thus enabling enhanced electrochemical performance.Symmetric cells consisting of undulating LiSn/Sn electrode with an active thickness of∼5 um displayed stable cycling over 1000 h at 1 mA cm^(-2) and 1 mAh cm^(-2) with a low average overpotential of<15 mV.When paired with commercial LiNi_(0.6)Co_(0.2)Mn_(0.2)O_(2)(NCM622)cathode with high mass loading of 15.8 mg cm^(-2),the full cell demonstrated a high capacity of 2.4 mAh cm^(-2) and outstanding cycling stability with 84.9% capacity retention at 0.5 C after 100 cycles.This work presents an advanced LiSn electrode with stress-regulation design toward high-performance LIBs,and sheds light on the rational electrode design and processing of other high-capacity lithium alloy anodes.展开更多
基金the National Natural Science Foundation of China(Nos.51988101 and 42007262).
文摘3D printing is widely adopted to quickly produce rock mass models with complex structures in batches,improving the consistency and repeatability of physical modeling.It is necessary to regulate the mechanical properties of 3D-printed specimens to make them proportionally similar to natural rocks.This study investigates mechanical properties of 3D-printed rock analogues prepared by furan resin-bonded silica sand particles.The mechanical property regulation of 3D-printed specimens is realized through quantifying its similarity to sandstone,so that analogous deformation characteristics and failure mode are acquired.Considering similarity conversion,uniaxial compressive strength,cohesion and stress–strain relationship curve of 3D-printed specimen are similar to those of sandstone.In the study ranges,the strength of 3D-printed specimen is positively correlated with the additive content,negatively correlated with the sand particle size,and first increases then decreases with the increase of curing temperature.The regulation scheme with optimal similarity quantification index,that is the sand type of 70/140,additive content of 2.5‰and curing temperature of 81.6℃,is determined for preparing 3D-printed sandstone analogues and models.The effectiveness of mechanical property regulation is proved through uniaxial compression contrast tests.This study provides a reference for preparing rock-like specimens and engineering models using 3D printing technology.
基金This work is financially supported by the Natural Science Foundation of China (Grant No.51802105,12172143,52002136)China Postdoctoral Science Foun-dation.
文摘Metallic tin(Sn)foil is a promising candidate anode for lithium-ion batteries(LIBs)due to its metallurgical processability and high capacity.However,it suffers low initial Coulombic efficiency and inferior cycling stability due to its uneven alloying/dealloying reactions,large volume change and stress,and fast electrode structural degradation.Herein,we report an undulating LiSn electrode fabricated by a scalable two-step procedure involving mechanical lithography and chemical prelithiation of Sn foil.With the combination of experimental measurements and chemo-mechanical simulations,it was revealed the obtained undulating LiSn/Sn electrode could ensure better mechanical stability due to the pre-swelling state from Sn to Li x Sn and undulating structure of lithography in comparison with plane Sn,homogenize the electrochemical alloying/dealloying reactions due to the activated surface materials,and compensate Li loss during cycling due to the introduction of excess Li from Li_(x)Sn,thus enabling enhanced electrochemical performance.Symmetric cells consisting of undulating LiSn/Sn electrode with an active thickness of∼5 um displayed stable cycling over 1000 h at 1 mA cm^(-2) and 1 mAh cm^(-2) with a low average overpotential of<15 mV.When paired with commercial LiNi_(0.6)Co_(0.2)Mn_(0.2)O_(2)(NCM622)cathode with high mass loading of 15.8 mg cm^(-2),the full cell demonstrated a high capacity of 2.4 mAh cm^(-2) and outstanding cycling stability with 84.9% capacity retention at 0.5 C after 100 cycles.This work presents an advanced LiSn electrode with stress-regulation design toward high-performance LIBs,and sheds light on the rational electrode design and processing of other high-capacity lithium alloy anodes.