The authors admire Poincaré’s idea that the convention on the nature for light propagation is the foundation of the measurement of time and point out that the conventions on the light velocity is just the conven...The authors admire Poincaré’s idea that the convention on the nature for light propagation is the foundation of the measurement of time and point out that the conventions on the light velocity is just the convention on the symmetries of space time.The conditions on the transitivity of synchronization of clock rate are shown.With the condition,not only the question about the definition of the synchronization of rate of clocks located at different places is answered,but also find the solution to the definition of the equality of two durations is found.展开更多
Presenting a unified model of motion and gravity has proved difficult as current approaches to quantum and classical physics are incompatible. Using measurement quantization—a model that demonstrates the physical sig...Presenting a unified model of motion and gravity has proved difficult as current approaches to quantum and classical physics are incompatible. Using measurement quantization—a model that demonstrates the physical significance of Planck’s units of length, mass, and time—measure is expressed as counts of the fundamental units establishing a common framework for describing quantum and cosmological phenomena with expressions that are defined throughout the entire physical domain. Beginning with the Pythagorean Theorem, we demonstrate an understanding of measure with respect to static and moving references. The model is extended to include the measure of mass thus completing a single approach for describing the contraction and dilation of measure. With this new approach, relativistic effects are now described as properties of quantized finite units of measure. In support of the model, several descriptions of phenomena are resolved that match our most precise data such as the measure of dark energy, universal expansion, mass distribution, and the age of the Cosmic Microwave Background.展开更多
Fundamental definitions of distance and velocity in radar measurement principle are examined and revised from strict theoretical point of view. Synchronization scheme - for clocks in uniform, translatory relative moti...Fundamental definitions of distance and velocity in radar measurement principle are examined and revised from strict theoretical point of view. Synchronization scheme - for clocks in uniform, translatory relative motion is introduced as theoretical foundation for GPS and GLONASS type navigation and positioning technology. Traditional definitions of two-way radar measurement, based on arithmetic mean vlaue concept, turn out to be special cases of revised definitions for one-way radar measurement, based on geometric mean concept, derived from synchronization of moving clocks in accordance with the principle of relativity. The essential physical meaning of Lorentz transformation is interpreted in terms of radar measured parameters. Invariance or absoluteness of four dimensional interval turns out to be invariance or absoluteness of geometric mean time interval. The Lorentz factor turns out to be ratio of geometric mean and arithmetic mean time intervals in terms of radar measured parameters. Theoretical results are illustrated transparently by numerical examples. A crucial experiment for direct testing of the second postulate of special relativity by means of GPS of GLONASS type technology is proposed in this paper.展开更多
Abstract Reactivity measurement is an essential part of a zero-power physics test,which is critical to reactor design and development.The rod drop experimental technique is used to measure the control rod worth in a z...Abstract Reactivity measurement is an essential part of a zero-power physics test,which is critical to reactor design and development.The rod drop experimental technique is used to measure the control rod worth in a zero-power physics test.The conventional rod drop experimental technique is limited by the spatial effect and the difference between the calculated static reactivity and measured dynamic reactivity;thus,the method must be improved.In this study,a modified rod drop experimental technique that constrains the detector neutron flux shape function based on three-dimensional space–time dynamics to reduce the reactivity perturbation and a new method for calculating the detector neutron flux shape function are proposed.Correction factors were determined using Monte Carlo N-particle transport code and transient analysis code for a pressurized water reactor at the Ulsan National Institute of Science and Technology and Xi’an Jiaotong University,and a large reactivity of over 2000 pcm was measured using the modified technique.This research evaluated the modified technique accuracy,studied the influence of the correction factors on the modification,and investigated the effect of constraining the shape function on the reactivity perturbation reduction caused by the difference between the calculated neutron flux and true value,using the new method to calculate the shape function of the detector neutron flux and avoiding the neutron detector response function(weighting factor)calculation.展开更多
文摘The authors admire Poincaré’s idea that the convention on the nature for light propagation is the foundation of the measurement of time and point out that the conventions on the light velocity is just the convention on the symmetries of space time.The conditions on the transitivity of synchronization of clock rate are shown.With the condition,not only the question about the definition of the synchronization of rate of clocks located at different places is answered,but also find the solution to the definition of the equality of two durations is found.
文摘Presenting a unified model of motion and gravity has proved difficult as current approaches to quantum and classical physics are incompatible. Using measurement quantization—a model that demonstrates the physical significance of Planck’s units of length, mass, and time—measure is expressed as counts of the fundamental units establishing a common framework for describing quantum and cosmological phenomena with expressions that are defined throughout the entire physical domain. Beginning with the Pythagorean Theorem, we demonstrate an understanding of measure with respect to static and moving references. The model is extended to include the measure of mass thus completing a single approach for describing the contraction and dilation of measure. With this new approach, relativistic effects are now described as properties of quantized finite units of measure. In support of the model, several descriptions of phenomena are resolved that match our most precise data such as the measure of dark energy, universal expansion, mass distribution, and the age of the Cosmic Microwave Background.
文摘Fundamental definitions of distance and velocity in radar measurement principle are examined and revised from strict theoretical point of view. Synchronization scheme - for clocks in uniform, translatory relative motion is introduced as theoretical foundation for GPS and GLONASS type navigation and positioning technology. Traditional definitions of two-way radar measurement, based on arithmetic mean vlaue concept, turn out to be special cases of revised definitions for one-way radar measurement, based on geometric mean concept, derived from synchronization of moving clocks in accordance with the principle of relativity. The essential physical meaning of Lorentz transformation is interpreted in terms of radar measured parameters. Invariance or absoluteness of four dimensional interval turns out to be invariance or absoluteness of geometric mean time interval. The Lorentz factor turns out to be ratio of geometric mean and arithmetic mean time intervals in terms of radar measured parameters. Theoretical results are illustrated transparently by numerical examples. A crucial experiment for direct testing of the second postulate of special relativity by means of GPS of GLONASS type technology is proposed in this paper.
文摘Abstract Reactivity measurement is an essential part of a zero-power physics test,which is critical to reactor design and development.The rod drop experimental technique is used to measure the control rod worth in a zero-power physics test.The conventional rod drop experimental technique is limited by the spatial effect and the difference between the calculated static reactivity and measured dynamic reactivity;thus,the method must be improved.In this study,a modified rod drop experimental technique that constrains the detector neutron flux shape function based on three-dimensional space–time dynamics to reduce the reactivity perturbation and a new method for calculating the detector neutron flux shape function are proposed.Correction factors were determined using Monte Carlo N-particle transport code and transient analysis code for a pressurized water reactor at the Ulsan National Institute of Science and Technology and Xi’an Jiaotong University,and a large reactivity of over 2000 pcm was measured using the modified technique.This research evaluated the modified technique accuracy,studied the influence of the correction factors on the modification,and investigated the effect of constraining the shape function on the reactivity perturbation reduction caused by the difference between the calculated neutron flux and true value,using the new method to calculate the shape function of the detector neutron flux and avoiding the neutron detector response function(weighting factor)calculation.