The existing articulated arm coordinate measuring machines(AACMM) with one measurement model are easy to cause low measurement accuracy because the whole sampling space is much bigger than the result in the unstable...The existing articulated arm coordinate measuring machines(AACMM) with one measurement model are easy to cause low measurement accuracy because the whole sampling space is much bigger than the result in the unstable calibration parameters. To compensate for the deficiency of one measurement model, the multiple measurement models are built by the Denavit-Hartenberg's notation, the homemade standard rod components are used as a calibration tool and the Levenberg-Marquardt calibration algorithm is applied to solve the structural parameters in the measurement models. During the tests of multiple measurement models, the sample areas are selected in two situations. It is found that the measurement errors' sigma value(0.083 4 ram) dealt with one measurement model is nearly two times larger than that of the multiple measurement models(0.043 1 ram) in the same sample area. While in the different sample area, the measurement errors' sigma value(0.054 0 ram) dealt with the multiple measurement models is about 40% of one measurement model(0.137 3 mm). The preliminary results suggest that the measurement accuracy of AACMM dealt with multiple measurement models is superior to the accuracy of the existing machine with one measurement model. This paper proposes the multiple measurement models to improve the measurement accuracy of AACMM without increasing any hardware cost.展开更多
基金Supported by National Natural Science Foundation of China(Grant No.51265017)Jiangxi Provincial Science and Technology Planning Project,China(Grant No.GJJ12468)Science and Technology Planning Project of Ji’an City,China(Grant No.20131828)
文摘The existing articulated arm coordinate measuring machines(AACMM) with one measurement model are easy to cause low measurement accuracy because the whole sampling space is much bigger than the result in the unstable calibration parameters. To compensate for the deficiency of one measurement model, the multiple measurement models are built by the Denavit-Hartenberg's notation, the homemade standard rod components are used as a calibration tool and the Levenberg-Marquardt calibration algorithm is applied to solve the structural parameters in the measurement models. During the tests of multiple measurement models, the sample areas are selected in two situations. It is found that the measurement errors' sigma value(0.083 4 ram) dealt with one measurement model is nearly two times larger than that of the multiple measurement models(0.043 1 ram) in the same sample area. While in the different sample area, the measurement errors' sigma value(0.054 0 ram) dealt with the multiple measurement models is about 40% of one measurement model(0.137 3 mm). The preliminary results suggest that the measurement accuracy of AACMM dealt with multiple measurement models is superior to the accuracy of the existing machine with one measurement model. This paper proposes the multiple measurement models to improve the measurement accuracy of AACMM without increasing any hardware cost.