The configuration-fixed deformation constrained relativistic mean field approach with time-odd component has been applied to investigate the ground state properties of 33Mg with effective interaction PK1.The ground st...The configuration-fixed deformation constrained relativistic mean field approach with time-odd component has been applied to investigate the ground state properties of 33Mg with effective interaction PK1.The ground state of 33Mg has been found to be prolate deformed,β2=0.23,with the odd neutron in 1/2[330] orbital and the energy -251.85 MeV which is close to the data -252.06 MeV.The magnetic moment -0.9134 μN is obtained with the effective electromagnetic current which well reproduces the data -0.7456 μN self-consistently without introducing any parameter.The energy splittings of time reversal conjugate states,the neutron current,the energy contribution from the nuclear magnetic potential,and the effect of core polarization are discussed in detail.展开更多
In this work, we have applied the translation invariant shell model with number of quanta of excitations N=2,4,6,8and 10 to define the ground-state eigenenergies and their corresponding normalized eigenstates, the roo...In this work, we have applied the translation invariant shell model with number of quanta of excitations N=2,4,6,8and 10 to define the ground-state eigenenergies and their corresponding normalized eigenstates, the root mean-square radius, and the magnetic dipole moment of the nucleus 6Li. We have computed the necessary two-particle orbital fractional parentage coefficients for nuclei with mass number A=6and number of quanta of excitations N=10, which are not available in the literature. In addition, we have used our previous findings on the nucleon-nucleon interaction with Gaussian radial dependencies, which fits the deuteron characteristics as well as the triton binding energy, root-mean square radius and magnetic dipole moment. The numerical results obtained in this work are in excellent agreement with the corresponding experimental data and the previously published theoretical results in the literature.展开更多
Historical surface drifter observations collected from the Southern Ocean are used to study the near-surface structure, variability, and energy characteristics of the Antarctic Circumpolar Current (ACC). A strong, n...Historical surface drifter observations collected from the Southern Ocean are used to study the near-surface structure, variability, and energy characteristics of the Antarctic Circumpolar Current (ACC). A strong, nearly zonal ACC combined with complex fronts dominates the circulation system in the Southern Ocean. Standard variance ellipses indicate that both the Agulhas Return Current and the East Australian Warm Current are stable supplements of the near-surface ACC, and that the anticyclonic gyre formed by the Brazil warm current and the Malvinas cold current is stable throughout the year. During austral winter, the current velocity increases because of the enhanced westerly wind. Aroused by the meridional motion of the ACC, the meridional velocity shows greater instability characteristics than the zonal velocity does over the core current. Additionally, the ACC exhibits an eastward declining trend in the core current velocity from southern Africa. The characteristics of the ACC are also argued from the perspective of energy. The energy distribution suggests that the mean kinetic energy (MKE), eddy kinetic energy (EKE), and are strong over the core currents of the ACC. However, in contrast, EKE/MKE suggests there is much less (more) eddy dissipation in regions with strong (weak) energy distribution. Both meridional and zonal energy variations are studied to illustrate additional details of the ACC energy characteristics. Generally, all the energy forms except EKE/MKE present west-east reducing trends, which coincide with the velocity statistics. Eddy dissipation has a much greater effect on MKE in the northern part of the Southern Ocean.展开更多
Net primary productivity(NPP)is an important breakthrough point of current research on ecological footprint improvement.The energy eco-footprint(EEF)of the Four-City Area in Central China(FCACC)was measured by constru...Net primary productivity(NPP)is an important breakthrough point of current research on ecological footprint improvement.The energy eco-footprint(EEF)of the Four-City Area in Central China(FCACC)was measured by constructing an EEF-NPP model.This work has made the following efforts:(1)Gini coefficient was employed to analyze the degree of matching between the EEF and economic growth,population,and energy consumption.(2)LMDI decomposition method was used to explore the impacts of multiple factors on the EEF in the FCACC.(3)Tapio decoupling model was applied to verify the decoupling relationships between the above influencing factors and the EEF.(4)LMDI decomposition formula was embedded into the decoupling model to analyze the impacts of technical and non-technical factors on the decoupling elasticity of the above.The main findings show that from 2010 to 2020:(1)the degree of matching of EEF-GDP,EEF-population,and EEF-energy consumption increased.(2)energy intensity and per capita GDP were the main factors that affected the EEF.(3)the decoupling states between total energy consumption,energy consumption structure,energy intensity,per capita GDP,and population size with the EEF were expansive negative decoupling,expansive negative decoupling,strong negative decoupling,weak decoupling,and expansive negative decoupling,respectively.(4)the impact of non-technical factors was greater than that of technical factors,and their impacts were always in opposite directions.展开更多
Considering the instability of the output power of photovoltaic(PV)generation system,to improve the power regulation ability of PV power during grid-connected operation,based on the quantitative analysis of meteorolog...Considering the instability of the output power of photovoltaic(PV)generation system,to improve the power regulation ability of PV power during grid-connected operation,based on the quantitative analysis of meteorological conditions,a short-term prediction method of PV power based on LMD-EE-ESN with iterative error correction was proposed.Firstly,through the fuzzy clustering processing of meteorological conditions,taking the power curves of PV power generation in sunny,rainy or snowy,cloudy,and changeable weather as the reference,the local mean decomposition(LMD)was carried out respectively,and their energy entropy(EE)was taken as the meteorological characteristics.Then,the historical generation power series was decomposed by LMD algorithm,and the hierarchical prediction of the power curve was realized by echo state network(ESN)prediction algorithm combined with meteorological characteristics.Finally,the iterative error theory was applied to the correction of power prediction results.The analysis of the historical data in the PV power generation system shows that this method avoids the influence of meteorological conditions in the short-term prediction of PV output power,and improves the accuracy of power prediction on the condition of hierarchical prediction and iterative error correction.展开更多
本文基于能源平衡表的内在结构逻辑,在Log Mean Divisia指数分解法的基础上,建立拓展的能源强度指数分解方法,将单位GDP能耗指标变化分解为五个因素的效应(结构效应、部门强度效应、加工转换效应、输配效应以及终端比重效应),并应用这...本文基于能源平衡表的内在结构逻辑,在Log Mean Divisia指数分解法的基础上,建立拓展的能源强度指数分解方法,将单位GDP能耗指标变化分解为五个因素的效应(结构效应、部门强度效应、加工转换效应、输配效应以及终端比重效应),并应用这个方法对我国1991-2010年间的单位GDP能耗指标的变化进行实证分解。实际结果表明该期间单位GDP能耗的变化主要来自于产业部门强度效应,其它四个因素效应的作用相对较小,但即因素效应的作用随着时间有不同的变化。展开更多
基金Supported by the Major State Basic Research Development Program (Grant No.2007CB815000)the National Natural Science Foundation of China (Grant Nos.10775004,10221003,10720003,and 10705004)
文摘The configuration-fixed deformation constrained relativistic mean field approach with time-odd component has been applied to investigate the ground state properties of 33Mg with effective interaction PK1.The ground state of 33Mg has been found to be prolate deformed,β2=0.23,with the odd neutron in 1/2[330] orbital and the energy -251.85 MeV which is close to the data -252.06 MeV.The magnetic moment -0.9134 μN is obtained with the effective electromagnetic current which well reproduces the data -0.7456 μN self-consistently without introducing any parameter.The energy splittings of time reversal conjugate states,the neutron current,the energy contribution from the nuclear magnetic potential,and the effect of core polarization are discussed in detail.
文摘In this work, we have applied the translation invariant shell model with number of quanta of excitations N=2,4,6,8and 10 to define the ground-state eigenenergies and their corresponding normalized eigenstates, the root mean-square radius, and the magnetic dipole moment of the nucleus 6Li. We have computed the necessary two-particle orbital fractional parentage coefficients for nuclei with mass number A=6and number of quanta of excitations N=10, which are not available in the literature. In addition, we have used our previous findings on the nucleon-nucleon interaction with Gaussian radial dependencies, which fits the deuteron characteristics as well as the triton binding energy, root-mean square radius and magnetic dipole moment. The numerical results obtained in this work are in excellent agreement with the corresponding experimental data and the previously published theoretical results in the literature.
基金supported by the National Natural Science Foundation of China(Grant no.41306206)the Basic Scientific Fund for National Public Research Institutes of China,Chinese Polar Environment Com-prehensive Investigation&Assessment Programmes(Grant nos.CHI-NARE2013-01-01,CHINARE2013-04-01),Projects IC2010011,A908-JK1006,and JDKC01-02supported by the Chinese Arctic and Antarctic Administration,SOA,and the Ministry of Science and Technology of China(Grant no.2010CB950301)
文摘Historical surface drifter observations collected from the Southern Ocean are used to study the near-surface structure, variability, and energy characteristics of the Antarctic Circumpolar Current (ACC). A strong, nearly zonal ACC combined with complex fronts dominates the circulation system in the Southern Ocean. Standard variance ellipses indicate that both the Agulhas Return Current and the East Australian Warm Current are stable supplements of the near-surface ACC, and that the anticyclonic gyre formed by the Brazil warm current and the Malvinas cold current is stable throughout the year. During austral winter, the current velocity increases because of the enhanced westerly wind. Aroused by the meridional motion of the ACC, the meridional velocity shows greater instability characteristics than the zonal velocity does over the core current. Additionally, the ACC exhibits an eastward declining trend in the core current velocity from southern Africa. The characteristics of the ACC are also argued from the perspective of energy. The energy distribution suggests that the mean kinetic energy (MKE), eddy kinetic energy (EKE), and are strong over the core currents of the ACC. However, in contrast, EKE/MKE suggests there is much less (more) eddy dissipation in regions with strong (weak) energy distribution. Both meridional and zonal energy variations are studied to illustrate additional details of the ACC energy characteristics. Generally, all the energy forms except EKE/MKE present west-east reducing trends, which coincide with the velocity statistics. Eddy dissipation has a much greater effect on MKE in the northern part of the Southern Ocean.
基金supported by the Science and Technology Projects of the Jiangxi Provincial Education Department(Grant No.GJJ2200518)the Ministry of Education in China Layout Project of Humanities and Social Sciences(Grant No.20YJAZH037).
文摘Net primary productivity(NPP)is an important breakthrough point of current research on ecological footprint improvement.The energy eco-footprint(EEF)of the Four-City Area in Central China(FCACC)was measured by constructing an EEF-NPP model.This work has made the following efforts:(1)Gini coefficient was employed to analyze the degree of matching between the EEF and economic growth,population,and energy consumption.(2)LMDI decomposition method was used to explore the impacts of multiple factors on the EEF in the FCACC.(3)Tapio decoupling model was applied to verify the decoupling relationships between the above influencing factors and the EEF.(4)LMDI decomposition formula was embedded into the decoupling model to analyze the impacts of technical and non-technical factors on the decoupling elasticity of the above.The main findings show that from 2010 to 2020:(1)the degree of matching of EEF-GDP,EEF-population,and EEF-energy consumption increased.(2)energy intensity and per capita GDP were the main factors that affected the EEF.(3)the decoupling states between total energy consumption,energy consumption structure,energy intensity,per capita GDP,and population size with the EEF were expansive negative decoupling,expansive negative decoupling,strong negative decoupling,weak decoupling,and expansive negative decoupling,respectively.(4)the impact of non-technical factors was greater than that of technical factors,and their impacts were always in opposite directions.
基金supported by National Natural Science Foundation of China(No.516667017).
文摘Considering the instability of the output power of photovoltaic(PV)generation system,to improve the power regulation ability of PV power during grid-connected operation,based on the quantitative analysis of meteorological conditions,a short-term prediction method of PV power based on LMD-EE-ESN with iterative error correction was proposed.Firstly,through the fuzzy clustering processing of meteorological conditions,taking the power curves of PV power generation in sunny,rainy or snowy,cloudy,and changeable weather as the reference,the local mean decomposition(LMD)was carried out respectively,and their energy entropy(EE)was taken as the meteorological characteristics.Then,the historical generation power series was decomposed by LMD algorithm,and the hierarchical prediction of the power curve was realized by echo state network(ESN)prediction algorithm combined with meteorological characteristics.Finally,the iterative error theory was applied to the correction of power prediction results.The analysis of the historical data in the PV power generation system shows that this method avoids the influence of meteorological conditions in the short-term prediction of PV output power,and improves the accuracy of power prediction on the condition of hierarchical prediction and iterative error correction.
文摘本文基于能源平衡表的内在结构逻辑,在Log Mean Divisia指数分解法的基础上,建立拓展的能源强度指数分解方法,将单位GDP能耗指标变化分解为五个因素的效应(结构效应、部门强度效应、加工转换效应、输配效应以及终端比重效应),并应用这个方法对我国1991-2010年间的单位GDP能耗指标的变化进行实证分解。实际结果表明该期间单位GDP能耗的变化主要来自于产业部门强度效应,其它四个因素效应的作用相对较小,但即因素效应的作用随着时间有不同的变化。