Climate change and variability have been inducing a broad spectrum of impacts on the environment and natural resources including groundwater resources. The study aimed at assessing the influence of weather, climate va...Climate change and variability have been inducing a broad spectrum of impacts on the environment and natural resources including groundwater resources. The study aimed at assessing the influence of weather, climate variability, and changes on the quality of groundwater resources in Zanzibar. The study used the climate datasets including rainfall (RF), Maximum and Minimum Temperature (T<sub>max</sub> and T<sub>min</sub>), the records acquired from Tanzania Meteorological Authority (TMA) Zanzibar office for 30 (1989-2019) and 10 (2010-2019) years periods. Also, the Zanzibar Water Authority (ZAWA) monthly records of Total Dissolved Solids (TDS), Electrical Conductivity (EC), and Ground Water Temperature (GWT) were used. Interpolation techniques were used for controlling outliers and missing datasets. Indeed, correlation, trend, and time series analyses were used to show the relationship between climate and water quality parameters. However, simple statistical analyses including mean, percentage changes, and contributions to the annual and seasonal mean were calculated. Moreover, t and paired t-tests were used to show the significant changes in the mean of the variables for two defined periods of 2011-2015 and 2016-2020 at p ≤ 0.05. Results revealed that seasonal variability of groundwater quality from March to May (MAM) has shown a significant change in trends ranging from 0.1 to 2.8 mm/L/yr, 0.1 to 2.8 μS/cm/yr, and 0.1 to 2.0℃/yr for TDS, EC, and GWT, respectively. The changes in climate parameters were 0.1 to 2.4 mm/yr, 0.2 to 1.3℃/yr and 0.1 to 2.5℃/yr in RF, T<sub>max</sub>, and T<sub>min</sub>, respectively. From October to December (OND) changes in groundwater parameters ranged from 0.2 to 2.5 mm/L/yr 0.1 to 2.9 μS/cm/yr, and 0.1 to 2.1℃/yr for TDS, EC, and GWT, whereas RF, T<sub>max</sub>, and T<sub>min</sub> changed from 0.3 to 1.8 mm/yr, 0.2 to 1.9℃/yr and 0.2 to 2.0℃/yr, respectively. Moreover, the study has shown strong correlations between climate and water qualit展开更多
In using the PGCEVD (Poisson-Gumbel Compound Extreme Value Distribution) model to calculate return values of typhoon wave height, the quantitative selection of the threshold has blocked its application. By analyzing...In using the PGCEVD (Poisson-Gumbel Compound Extreme Value Distribution) model to calculate return values of typhoon wave height, the quantitative selection of the threshold has blocked its application. By analyzing the principle of the threshold selection of PGCEVD model and in combination of the change point statistical methods, this paper proposes a new method for quantitative calculation of the threshold in PGCEVD model. Eleven samples from five engineering points in several coastal waters of Guangdong and Hainan, China, are calculated and analyzed by using PGCEVD model and the traditional Pearson type III distribution (P-III) model, respectively. By comparing the results of the two models, it is shown that the new method of selecting the optimal threshold is feasible. PGCEVD model has more stable results than that of P-III model and can be used for the return wave height in every direction.展开更多
文摘Climate change and variability have been inducing a broad spectrum of impacts on the environment and natural resources including groundwater resources. The study aimed at assessing the influence of weather, climate variability, and changes on the quality of groundwater resources in Zanzibar. The study used the climate datasets including rainfall (RF), Maximum and Minimum Temperature (T<sub>max</sub> and T<sub>min</sub>), the records acquired from Tanzania Meteorological Authority (TMA) Zanzibar office for 30 (1989-2019) and 10 (2010-2019) years periods. Also, the Zanzibar Water Authority (ZAWA) monthly records of Total Dissolved Solids (TDS), Electrical Conductivity (EC), and Ground Water Temperature (GWT) were used. Interpolation techniques were used for controlling outliers and missing datasets. Indeed, correlation, trend, and time series analyses were used to show the relationship between climate and water quality parameters. However, simple statistical analyses including mean, percentage changes, and contributions to the annual and seasonal mean were calculated. Moreover, t and paired t-tests were used to show the significant changes in the mean of the variables for two defined periods of 2011-2015 and 2016-2020 at p ≤ 0.05. Results revealed that seasonal variability of groundwater quality from March to May (MAM) has shown a significant change in trends ranging from 0.1 to 2.8 mm/L/yr, 0.1 to 2.8 μS/cm/yr, and 0.1 to 2.0℃/yr for TDS, EC, and GWT, respectively. The changes in climate parameters were 0.1 to 2.4 mm/yr, 0.2 to 1.3℃/yr and 0.1 to 2.5℃/yr in RF, T<sub>max</sub>, and T<sub>min</sub>, respectively. From October to December (OND) changes in groundwater parameters ranged from 0.2 to 2.5 mm/L/yr 0.1 to 2.9 μS/cm/yr, and 0.1 to 2.1℃/yr for TDS, EC, and GWT, whereas RF, T<sub>max</sub>, and T<sub>min</sub> changed from 0.3 to 1.8 mm/yr, 0.2 to 1.9℃/yr and 0.2 to 2.0℃/yr, respectively. Moreover, the study has shown strong correlations between climate and water qualit
文摘地势起伏度是斜坡地质灾害发育的重要地形因子之一,但目前在敏感性评价研究中较少考虑地势起伏度提取受提取单元尺度大小的影响这一因素。以山西省太原市西山地质块体为研究区,以ASTER GDEM V2和2012年研究区斜坡地质灾害分布信息为数据源,以ArcGIS为平台,以均值变点法对2×2,3×3,4×4,5×5,…,25×25共24个尺度开展了地势起伏度与地质灾害分布峰值、平均地势起伏度和地势起伏度峰值之间的关系分析。结果表明:最佳提取单元在斜坡地质灾害分布峰值、平均地势起伏度和地势起伏度峰值上表现不同,分别为9×9网格、12×12网格、12×12网格,综合考虑区域地貌演变和地质灾害演变因素,选择9×9网格作为研究区斜坡地质灾害敏感性评价时的最佳地势起伏度提取单元,最佳统计面积为0.0729 km2.
基金supported by the National Natural Science Foundation of China(Grant No.10902039)the Major Project Research of the Ministry of Railways of the People's Republic of China(Grant No.2010-201)
文摘In using the PGCEVD (Poisson-Gumbel Compound Extreme Value Distribution) model to calculate return values of typhoon wave height, the quantitative selection of the threshold has blocked its application. By analyzing the principle of the threshold selection of PGCEVD model and in combination of the change point statistical methods, this paper proposes a new method for quantitative calculation of the threshold in PGCEVD model. Eleven samples from five engineering points in several coastal waters of Guangdong and Hainan, China, are calculated and analyzed by using PGCEVD model and the traditional Pearson type III distribution (P-III) model, respectively. By comparing the results of the two models, it is shown that the new method of selecting the optimal threshold is feasible. PGCEVD model has more stable results than that of P-III model and can be used for the return wave height in every direction.