This study presents a kinematic calibration method for exoskeletal inertial motion capture (EI-MoCap) system with considering the random colored noise such as gyroscopic drift.In this method, the geometric parameters ...This study presents a kinematic calibration method for exoskeletal inertial motion capture (EI-MoCap) system with considering the random colored noise such as gyroscopic drift.In this method, the geometric parameters are calibrated by the traditional calibration method at first. Then, in order to calibrate the parameters affected by the random colored noise, the expectation maximization (EM) algorithm is introduced. Through the use of geometric parameters calibrated by the traditional calibration method, the iterations under the EM framework are decreased and the efficiency of the proposed method on embedded system is improved. The performance of the proposed kinematic calibration method is compared to the traditional calibration method. Furthermore, the feasibility of the proposed method is verified on the EI-MoCap system. The simulation and experiment demonstrate that the motion capture precision is significantly improved by 16.79%and 7.16%respectively in comparison to the traditional calibration method.展开更多
Identification of nonlinear systems with unknown piecewise time-varying delay is concerned in this paper.Multiple auto regressive exogenous(ARX) models are identified at different process operating points,and the comp...Identification of nonlinear systems with unknown piecewise time-varying delay is concerned in this paper.Multiple auto regressive exogenous(ARX) models are identified at different process operating points,and the complete dynamics of the nonlinear system is represented by using a combination of a normalized exponential function as the probability density function with each of the local models.The parameters of the local ARX models and the exponential functions as well as the unknown piecewise time-varying delays are estimated simultaneously under the framework of the expectation maximization(EM) algorithm.A simulation example is applied to demonstrating the proposed identification method.展开更多
Taking the advantage of the nearly 14 000 items of muhi-source, multi-dimension practical dataset of type 2 diabetes, and a series of data mining experiments are designed to seek for important type 2 diabetes risk fac...Taking the advantage of the nearly 14 000 items of muhi-source, multi-dimension practical dataset of type 2 diabetes, and a series of data mining experiments are designed to seek for important type 2 diabetes risk factors and their relationships with blood glucose. The valuable pathological knowledge includes, the deci- sion tree is almost identical with the list of clinical diabetic risk factors; 9 items important risk factors of type 2 diabetes were found, and the relationship between the main risk factors and the blood glucose, and the feature of critical value of the risk factors were given too in this paper. These valuable results are good to the cure and macro-control type 2 diabetes.展开更多
Intrusion detection is the investigation process of information about the system activities or its data to detect any malicious behavior or unauthorized activity.Most of the IDS implement K-means clustering technique ...Intrusion detection is the investigation process of information about the system activities or its data to detect any malicious behavior or unauthorized activity.Most of the IDS implement K-means clustering technique due to its linear complexity and fast computing ability.Nonetheless,it is Naïve use of the mean data value for the cluster core that presents a major drawback.The chances of two circular clusters having different radius and centering at the same mean will occur.This condition cannot be addressed by the K-means algorithm because the mean value of the various clusters is very similar together.However,if the clusters are not spherical,it fails.To overcome this issue,a new integrated hybrid model by integrating expectation maximizing(EM)clustering using a Gaussian mixture model(GMM)and naïve Bays classifier have been proposed.In this model,GMM give more flexibility than K-Means in terms of cluster covariance.Also,they use probabilities function and soft clustering,that’s why they can have multiple cluster for a single data.In GMM,we can define the cluster form in GMM by two parameters:the mean and the standard deviation.This means that by using these two parameters,the cluster can take any kind of elliptical shape.EM-GMM will be used to cluster data based on data activity into the corresponding category.展开更多
为研究自由飞行条件下给定间距的飞机碰撞风险评估问题,通过分析自由飞行下的飞机碰撞过程,分解碰撞事故发生过程,将与碰撞密切相关的风险因素或过程事件视为节点,并确定节点之间的关系,建立自由飞行状态下基于贝叶斯网络的碰撞风险模型...为研究自由飞行条件下给定间距的飞机碰撞风险评估问题,通过分析自由飞行下的飞机碰撞过程,分解碰撞事故发生过程,将与碰撞密切相关的风险因素或过程事件视为节点,并确定节点之间的关系,建立自由飞行状态下基于贝叶斯网络的碰撞风险模型;利用传统的位置误差模型,以及最大期望(EM)算法,求解节点事件的先验概率,导入贝叶斯网络模型,求得2架飞机碰撞风险。算例结果表明,用该模型计算出的碰撞风险与实际情况相符,算例中飞机之间保持8 n mile的间距是安全的;利用该模型可在满足安全目标水平条件下缩小最小安全间距,提高空域利用率。展开更多
基金supported by the National Natural Science Foundation of China (61503392)。
文摘This study presents a kinematic calibration method for exoskeletal inertial motion capture (EI-MoCap) system with considering the random colored noise such as gyroscopic drift.In this method, the geometric parameters are calibrated by the traditional calibration method at first. Then, in order to calibrate the parameters affected by the random colored noise, the expectation maximization (EM) algorithm is introduced. Through the use of geometric parameters calibrated by the traditional calibration method, the iterations under the EM framework are decreased and the efficiency of the proposed method on embedded system is improved. The performance of the proposed kinematic calibration method is compared to the traditional calibration method. Furthermore, the feasibility of the proposed method is verified on the EI-MoCap system. The simulation and experiment demonstrate that the motion capture precision is significantly improved by 16.79%and 7.16%respectively in comparison to the traditional calibration method.
基金Key Project of the National Nature Science Foundation of China(No.61134009)National Nature Science Foundations of China(Nos.61473077,61473078,61503075)+5 种基金Program for Changjiang Scholars from the Ministry of Education,ChinaSpecialized Research Fund for Shanghai Leading Talents,ChinaProject of the Shanghai Committee of Science and Technology,China(No.13JC1407500)Innovation Program of Shanghai Municipal Education Commission,China(No.14ZZ067)Shanghai Pujiang Program,China(No.15PJ1400100)Fundamental Research Funds for the Central Universities,China(Nos.15D110423,2232015D3-32)
文摘Identification of nonlinear systems with unknown piecewise time-varying delay is concerned in this paper.Multiple auto regressive exogenous(ARX) models are identified at different process operating points,and the complete dynamics of the nonlinear system is represented by using a combination of a normalized exponential function as the probability density function with each of the local models.The parameters of the local ARX models and the exponential functions as well as the unknown piecewise time-varying delays are estimated simultaneously under the framework of the expectation maximization(EM) algorithm.A simulation example is applied to demonstrating the proposed identification method.
基金Sponsored by the National Natural Science Foundation of China(60671008)the National Science and Technology Support Project(2006038070031)the National"863"Program Project(2006AA02Z429)
文摘Taking the advantage of the nearly 14 000 items of muhi-source, multi-dimension practical dataset of type 2 diabetes, and a series of data mining experiments are designed to seek for important type 2 diabetes risk factors and their relationships with blood glucose. The valuable pathological knowledge includes, the deci- sion tree is almost identical with the list of clinical diabetic risk factors; 9 items important risk factors of type 2 diabetes were found, and the relationship between the main risk factors and the blood glucose, and the feature of critical value of the risk factors were given too in this paper. These valuable results are good to the cure and macro-control type 2 diabetes.
文摘Intrusion detection is the investigation process of information about the system activities or its data to detect any malicious behavior or unauthorized activity.Most of the IDS implement K-means clustering technique due to its linear complexity and fast computing ability.Nonetheless,it is Naïve use of the mean data value for the cluster core that presents a major drawback.The chances of two circular clusters having different radius and centering at the same mean will occur.This condition cannot be addressed by the K-means algorithm because the mean value of the various clusters is very similar together.However,if the clusters are not spherical,it fails.To overcome this issue,a new integrated hybrid model by integrating expectation maximizing(EM)clustering using a Gaussian mixture model(GMM)and naïve Bays classifier have been proposed.In this model,GMM give more flexibility than K-Means in terms of cluster covariance.Also,they use probabilities function and soft clustering,that’s why they can have multiple cluster for a single data.In GMM,we can define the cluster form in GMM by two parameters:the mean and the standard deviation.This means that by using these two parameters,the cluster can take any kind of elliptical shape.EM-GMM will be used to cluster data based on data activity into the corresponding category.
文摘为研究自由飞行条件下给定间距的飞机碰撞风险评估问题,通过分析自由飞行下的飞机碰撞过程,分解碰撞事故发生过程,将与碰撞密切相关的风险因素或过程事件视为节点,并确定节点之间的关系,建立自由飞行状态下基于贝叶斯网络的碰撞风险模型;利用传统的位置误差模型,以及最大期望(EM)算法,求解节点事件的先验概率,导入贝叶斯网络模型,求得2架飞机碰撞风险。算例结果表明,用该模型计算出的碰撞风险与实际情况相符,算例中飞机之间保持8 n mile的间距是安全的;利用该模型可在满足安全目标水平条件下缩小最小安全间距,提高空域利用率。