期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于mRMR与基尼重要性的树突状细胞模型 被引量:2
1
作者 张凯林 董红斌 《计算机工程》 CAS CSCD 北大核心 2023年第5期129-138,共10页
树突状细胞算法(DCA)模拟人体免疫系统中树突状细胞对抗原的识别与提呈过程,是一种快速有效的异常检测方法,其关键是从数据中选取有效特征以表示特定的输入信号。然而,现有信号选取方法存在特征子集冗余、时间复杂度高等问题,导致生成... 树突状细胞算法(DCA)模拟人体免疫系统中树突状细胞对抗原的识别与提呈过程,是一种快速有效的异常检测方法,其关键是从数据中选取有效特征以表示特定的输入信号。然而,现有信号选取方法存在特征子集冗余、时间复杂度高等问题,导致生成的抗原信号有效性较低,且在高维大样本数据集上运行速度较慢。考虑抗原信号的可用性与信号选取过程的时间效率,提出基于最大相关最小冗余(mRMR)与基尼重要性的树突状细胞模型MRGI-DCA。通过mRMR从原始数据集中快速地提取最相关特征子集,且最大限度地降低特征子集的冗余性。在mRMR预降维的基础上,根据CART树模型快速、准确等特点,利用基尼重要性得到更有效的抗原信号。实验结果表明,MRGI-DCA总体表现优于IG-DCA、COR-DCA、GA-DCA和SVM-DCA方法,其中,准确率、F1值和AUC在高维、低维、异常数据集上的平均值较COR-DCA分别提高6.01%、5.86%、9.96%,并且平均运行时间约为COR-DCA的1/5。 展开更多
关键词 树突状细胞算法 信号选取 最大相关最小冗余算法 基尼重要性 人工免疫系统
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部