The soybean cultivar Yudou25 was sown at 5 locations of Henan Province on 13 differentdates in 2001 and 2002. The data of isoflavone contents for the 109 samples of soybeanseed and 33 eco-physiological factors includi...The soybean cultivar Yudou25 was sown at 5 locations of Henan Province on 13 differentdates in 2001 and 2002. The data of isoflavone contents for the 109 samples of soybeanseed and 33 eco-physiological factors including meteorological factors, soil nutritionand altitudes were received and used for statistical analysis. The step-wise regressionwas used to screen the correlated factors, which significantly effected isoflavonecontents. Results showed that 9 eco-physiological factors were highly correlated withisoflavones. Low mean temperature, high diurnal temperature range at seed filling andmaturity, more sunlight hours and low mean temperature at emergence were favorable toisoflavone accumulation. The rainfall at emergence showed a nonlinear relationship withisoflavone content and its optimum value was 75 mm for isoflavone formation. Low diurnaltemperature range at branching, high organic matter and low sulfur content in soil weresuitable for the formation of isoflavones. The isoflavone contents would not be affectedby other eco-physiological factors in this study.展开更多
A survey of petal-specific proteomes of soybean(Glycine max(L.) Merr[Non-italic].) was conducted comparing protein expression profiles in different petals. Two-dimensional polyacrylamide gel electrophoresis reference ...A survey of petal-specific proteomes of soybean(Glycine max(L.) Merr[Non-italic].) was conducted comparing protein expression profiles in different petals. Two-dimensional polyacrylamide gel electrophoresis reference maps of protein extracts from standard petals(SP), lateral wings(LW), keel petals(KP), and reproductive organs(RO)(a mixture of stamen and carpel) were obtained. Protein expression in the three petal types was compared using Image Master TM 2 D platinum 6.0 software. This indicated that the proportion of homologous proteins between SP and LW was 59.27%, between SP and KP was 61.48%, and between LW and KP was 60.05%. Within a mass range of 6.5-200.0 ku and pH 4.0-7.0, approximately 590, 646, 544, and 700 protein spots were detected in SP, LW, KP, and RO, respectively. A total of 82 differentially expressed proteins were detected. Sixty-four of these detected spots were differentially expressed and showed more than 2-fold changes in abundance; of these 64 proteins, 26 showed increased expression and 38 showed decreased expression. Among these spots, single organ-specific proteins were also identified.They were ID 49(60.9 ku), ID 45(50.0 ku), and ID 46(40.5 ku) in RO, ID 98(42.0 ku) in SP, and ID 05(29.0 ku) in KP. A total of 14 protein spots from 82 differentially expressed proteins were identified with LC-MS/MS. Further protein identification was conducted using the SwissProt and NCBInr databases. The identified proteins and their putative functions were discussed further. This was the first study reporting the comparison of petal protein profiles of soybean florets using proteomics tools.展开更多
Seeding rate is an important management practice for soybean production.Chinese and U.S.soybean growers use different seeding rates,and breeders in the two countries have developed cultivars adapted to respective plan...Seeding rate is an important management practice for soybean production.Chinese and U.S.soybean growers use different seeding rates,and breeders in the two countries have developed cultivars adapted to respective plant densities.The objective of this study was to compare the effect of plant density on cultivars recently released in different breeding programs,using four cultivars developed in Liaoning,China and four in Ohio,USA.We used 3 plant density treatments(7.5,15.0,22.5 x 104 plants/hm2) and assessed yield and agronomic traits from 2004 to 2006 in Liaoning.There was no significant effect of plant density on yield for either group of the cultivars.The average yield of Ohio cultivars was higher than that of Liaoning cultivars,and there was no significant interaction between plant density and cultivar for all the assessed traits.The plant height of Liaoning cultivars was significantly higher than that of Ohio cultivars,and there was a significant effect of plant density on plant height.The average branch number of Ohio cultivars was larger than that of Liaoning cultivars;higher plant density reduced the branch number per plant greatly.Plant density had a signifi-cant effect on the node number and internode length,Liaoning cultivars generally had longer internode length.Plant density had a significant effect on seed yield:stem ratio,as the plant density increased the seed yield:stem ratio decreased for both groups of cultivars.However,100-seed weight was not affected by plant density.展开更多
关联作图是一种利用连锁不平衡(linkage disequilibrium,LD)检测自然群体中基因位点及其等位变异的方法。利用60个SSR标记,对全国大豆地方品种群体(393份代表性材料)和野生大豆群体(196份代表性材料)的基因组变异进行扫描,分析两类群体...关联作图是一种利用连锁不平衡(linkage disequilibrium,LD)检测自然群体中基因位点及其等位变异的方法。利用60个SSR标记,对全国大豆地方品种群体(393份代表性材料)和野生大豆群体(196份代表性材料)的基因组变异进行扫描,分析两类群体的连锁不平衡位点、群体结构,并采用TASSEL软件的GLM(general linear model)方法对16个农艺、品质性状观测值进行标记与性状的关联分析。结果表明:(1)在公共图谱上不论共线性的或是非共线性的SSR位点组合都有一定程度的LD,说明历史上发生过连锁群间的重组;栽培群体的连锁不平衡成对位点数较野生群体多,但野生群体位点间连锁不平衡程度高,随距离的衰减慢。(2)群体SSR数据遗传结构分析发现,栽培群体和野生群体分别由9和4个亚群体组成,亚群的划分与群体地理生态类型相关联,证实地理生态类型划分有其遗传基础。(3)栽培群体中累计有27个位点与性状相关;野生大豆种质中累计有34个位点与性状相关。部分标记在两类群体中都表现与同一性状关联,检出的位点有一致性,也有互补性;一些标记同时与2个或多个性状相关联,可能是性状相关乃至一因多效的遗传基础;关联位点中累计有24位点(次)与遗传群体连锁分析定位的QTL一致。展开更多
文摘The soybean cultivar Yudou25 was sown at 5 locations of Henan Province on 13 differentdates in 2001 and 2002. The data of isoflavone contents for the 109 samples of soybeanseed and 33 eco-physiological factors including meteorological factors, soil nutritionand altitudes were received and used for statistical analysis. The step-wise regressionwas used to screen the correlated factors, which significantly effected isoflavonecontents. Results showed that 9 eco-physiological factors were highly correlated withisoflavones. Low mean temperature, high diurnal temperature range at seed filling andmaturity, more sunlight hours and low mean temperature at emergence were favorable toisoflavone accumulation. The rainfall at emergence showed a nonlinear relationship withisoflavone content and its optimum value was 75 mm for isoflavone formation. Low diurnaltemperature range at branching, high organic matter and low sulfur content in soil weresuitable for the formation of isoflavones. The isoflavone contents would not be affectedby other eco-physiological factors in this study.
基金Supported by Harbin Science and Technology Bureau(2016RQYXJ018,2017RAQXJ104)the Key Laboratory of Soybean Biology in the Chinese Ministry of Education,Northeast Agricultural University(SB17A01)+3 种基金the National Natural Science Foundation of China(31801386)Heilongjiang Natural Science Foundation(LC2018008)Heilongjiang General Young Innovative Talents Training Plan(UNPYSCT-2018158)Certificate of China Postdoctoral Science Foundation Grant(2018M641839)
文摘A survey of petal-specific proteomes of soybean(Glycine max(L.) Merr[Non-italic].) was conducted comparing protein expression profiles in different petals. Two-dimensional polyacrylamide gel electrophoresis reference maps of protein extracts from standard petals(SP), lateral wings(LW), keel petals(KP), and reproductive organs(RO)(a mixture of stamen and carpel) were obtained. Protein expression in the three petal types was compared using Image Master TM 2 D platinum 6.0 software. This indicated that the proportion of homologous proteins between SP and LW was 59.27%, between SP and KP was 61.48%, and between LW and KP was 60.05%. Within a mass range of 6.5-200.0 ku and pH 4.0-7.0, approximately 590, 646, 544, and 700 protein spots were detected in SP, LW, KP, and RO, respectively. A total of 82 differentially expressed proteins were detected. Sixty-four of these detected spots were differentially expressed and showed more than 2-fold changes in abundance; of these 64 proteins, 26 showed increased expression and 38 showed decreased expression. Among these spots, single organ-specific proteins were also identified.They were ID 49(60.9 ku), ID 45(50.0 ku), and ID 46(40.5 ku) in RO, ID 98(42.0 ku) in SP, and ID 05(29.0 ku) in KP. A total of 14 protein spots from 82 differentially expressed proteins were identified with LC-MS/MS. Further protein identification was conducted using the SwissProt and NCBInr databases. The identified proteins and their putative functions were discussed further. This was the first study reporting the comparison of petal protein profiles of soybean florets using proteomics tools.
文摘Seeding rate is an important management practice for soybean production.Chinese and U.S.soybean growers use different seeding rates,and breeders in the two countries have developed cultivars adapted to respective plant densities.The objective of this study was to compare the effect of plant density on cultivars recently released in different breeding programs,using four cultivars developed in Liaoning,China and four in Ohio,USA.We used 3 plant density treatments(7.5,15.0,22.5 x 104 plants/hm2) and assessed yield and agronomic traits from 2004 to 2006 in Liaoning.There was no significant effect of plant density on yield for either group of the cultivars.The average yield of Ohio cultivars was higher than that of Liaoning cultivars,and there was no significant interaction between plant density and cultivar for all the assessed traits.The plant height of Liaoning cultivars was significantly higher than that of Ohio cultivars,and there was a significant effect of plant density on plant height.The average branch number of Ohio cultivars was larger than that of Liaoning cultivars;higher plant density reduced the branch number per plant greatly.Plant density had a signifi-cant effect on the node number and internode length,Liaoning cultivars generally had longer internode length.Plant density had a significant effect on seed yield:stem ratio,as the plant density increased the seed yield:stem ratio decreased for both groups of cultivars.However,100-seed weight was not affected by plant density.
文摘关联作图是一种利用连锁不平衡(linkage disequilibrium,LD)检测自然群体中基因位点及其等位变异的方法。利用60个SSR标记,对全国大豆地方品种群体(393份代表性材料)和野生大豆群体(196份代表性材料)的基因组变异进行扫描,分析两类群体的连锁不平衡位点、群体结构,并采用TASSEL软件的GLM(general linear model)方法对16个农艺、品质性状观测值进行标记与性状的关联分析。结果表明:(1)在公共图谱上不论共线性的或是非共线性的SSR位点组合都有一定程度的LD,说明历史上发生过连锁群间的重组;栽培群体的连锁不平衡成对位点数较野生群体多,但野生群体位点间连锁不平衡程度高,随距离的衰减慢。(2)群体SSR数据遗传结构分析发现,栽培群体和野生群体分别由9和4个亚群体组成,亚群的划分与群体地理生态类型相关联,证实地理生态类型划分有其遗传基础。(3)栽培群体中累计有27个位点与性状相关;野生大豆种质中累计有34个位点与性状相关。部分标记在两类群体中都表现与同一性状关联,检出的位点有一致性,也有互补性;一些标记同时与2个或多个性状相关联,可能是性状相关乃至一因多效的遗传基础;关联位点中累计有24位点(次)与遗传群体连锁分析定位的QTL一致。