Objective To evaluate the antagonistic effects of N-acetylcysteine(NAC)on mitogen-activated protein kinases(MAPK)pathway activation,oxidative stress and inflammatory responses in rats with lung injury induced by fine ...Objective To evaluate the antagonistic effects of N-acetylcysteine(NAC)on mitogen-activated protein kinases(MAPK)pathway activation,oxidative stress and inflammatory responses in rats with lung injury induced by fine particulate matter(PM2.5).Methods Forty eight male Wistar rats were randomly divided into six groups:blank control group(C1),water drip control group(C2),PM2.5 exposed group(P),low-dose NAC treated and PM2.5 exposed group(L),middle-dose NAC treated and PM2.5 exposed group(M),and high-dose NAC treated and PM2.5 exposed group(H).PM2.5 suspension(7.5 mg/kg)was administered tracheally once a week for four times.NAC of 125 mg/kg,250 mg/kg and 500 mg/kg was delivered intragastrically to L,M and H group respectively by gavage(10 ml/kg)for six days before PM2.5 exposure.The histopathological changes and human mucin 5 subtype AC(MUC5AC)content in lung tissue of rats were evaluated.We investigated IL-6 in serum and bronchoalveolar lavage fluid(BALF)by Enzyme-linked immunosorbent assay(ELISA),MUC5AC in lung tissue homogenate by ELISA,glutathione peroxidase(GSH-PX)in serum and BALF by spectrophotometry,and the expression of p-ERK1/2,p-JNK1/2 and p-p38 proteins by Western blot.All the measurements were analyzed and compared statistically.Results Lung tissue of rats exposed to PM2.5 showed histological destruction and increased mucus secretion of bronchial epithelial cells.Rats receiving NAC treatment showed less histological destruction and mucus secretion.Of P,L,M and H group,MUC5AC in lung tissue,IL-6 in serum and BALF were higher than controls(C1 and C2)(all P<0.05),with the highest levels found in the P group and a decreasing trend with increase of NAC dose.The activity of GSH-PX in serum and BALF of PM2.5 exposed rats(P,L,M and H)was lower than that of controls(all P<0.05),with higher activities found in NAC treated rats(L,M,and H),and an increasing trend with increase of NAC dose.The expressions of p-ERK1/2,p-JNK1/2 and p-p38 proteins in PM2.5 exposed lung tissue(P,L,M and H)was higher than controls(all P<0展开更多
Exposure to fine ambient particulate matter(PM_(2.5)) is known to be associated with cardiovascular disease. To uncover the molecular mechanisms involved in cardiovascular toxicity of PM_(2.5), we investigated alterat...Exposure to fine ambient particulate matter(PM_(2.5)) is known to be associated with cardiovascular disease. To uncover the molecular mechanisms involved in cardiovascular toxicity of PM_(2.5), we investigated alterations in the protein profile of human umbilical vein endothelial cells(HUVECs) treated with PM_(2.5) using two-dimensional electrophoresis in conjunction with mass spectrometry(MS). A total of 31 protein spots were selected as differentially expressed proteins and identified by matrix-assisted laser desorption/ionization-time of flight(MALDI-TOF) MS. The results demonstrated that DNA damage and cell apoptosis are important factors contributing to PM_(2.5)-mediated toxicity in HUVECs. It is further proposed that PM_(2.5) can inhibit superoxide dismutase(SOD) activity and increase reactive oxygen species(ROS) and malonaldehyde(MDA) production in a concentration-dependent manner. Induction of apoptosis and DNA damage through oxidative stress pathways may be one of the key toxicological events occurring in HUVECs under PM_(2.5) stress. These results indicated that the toxic mechanisms of PM_(2.5) on cardiovascular disease are related to endothelial dysfunction.展开更多
A disruptive approach to a fundamental process has been applied in a biomass combustion device with two variable speed fans to supply air for gasification and another for combustion processes,separately.Besides,the pr...A disruptive approach to a fundamental process has been applied in a biomass combustion device with two variable speed fans to supply air for gasification and another for combustion processes,separately.Besides,the preheating of secondary air,required for combustion process was also ensured through annulus chamber before being fed into the combustion chamber.The turbulent flow and homogenous mixing were also ensured by controlling the flow rate resulting in the reduced emissions of carbon monoxide(CO)and fine particulate matter(PM 2.5,particulate matter having aerodynamic diameter<2.5 micron).The design approach applied here has also ensured the homogeneous mixing of preheated air with the volatiles,resulted in cleaner combustion.This arrangement has led to the emissions of PM2.5 and CO much better than those of the earlier cookstove models,and very close to that of a liquefied petroleum gas(LPG)stove.Further,the comparative analysis based on the modified star rating of total 15(14 are biomass and another LPG)cookstove models tested using the same standard methodology has been done and presented in this study.Based on the star rating,the performance of the LPG stove was found to be best and assigned as a 5-star product followed by the IITD model(4-star),while the other 13 models got different ratings starting from 1-star to 3-star,respectively.Also,the thermal performance of the IITD cookstove model is found to be the highest,while the emission characteristics are found to be the least among all biomass cookstove models,presented here.展开更多
文摘Objective To evaluate the antagonistic effects of N-acetylcysteine(NAC)on mitogen-activated protein kinases(MAPK)pathway activation,oxidative stress and inflammatory responses in rats with lung injury induced by fine particulate matter(PM2.5).Methods Forty eight male Wistar rats were randomly divided into six groups:blank control group(C1),water drip control group(C2),PM2.5 exposed group(P),low-dose NAC treated and PM2.5 exposed group(L),middle-dose NAC treated and PM2.5 exposed group(M),and high-dose NAC treated and PM2.5 exposed group(H).PM2.5 suspension(7.5 mg/kg)was administered tracheally once a week for four times.NAC of 125 mg/kg,250 mg/kg and 500 mg/kg was delivered intragastrically to L,M and H group respectively by gavage(10 ml/kg)for six days before PM2.5 exposure.The histopathological changes and human mucin 5 subtype AC(MUC5AC)content in lung tissue of rats were evaluated.We investigated IL-6 in serum and bronchoalveolar lavage fluid(BALF)by Enzyme-linked immunosorbent assay(ELISA),MUC5AC in lung tissue homogenate by ELISA,glutathione peroxidase(GSH-PX)in serum and BALF by spectrophotometry,and the expression of p-ERK1/2,p-JNK1/2 and p-p38 proteins by Western blot.All the measurements were analyzed and compared statistically.Results Lung tissue of rats exposed to PM2.5 showed histological destruction and increased mucus secretion of bronchial epithelial cells.Rats receiving NAC treatment showed less histological destruction and mucus secretion.Of P,L,M and H group,MUC5AC in lung tissue,IL-6 in serum and BALF were higher than controls(C1 and C2)(all P<0.05),with the highest levels found in the P group and a decreasing trend with increase of NAC dose.The activity of GSH-PX in serum and BALF of PM2.5 exposed rats(P,L,M and H)was lower than that of controls(all P<0.05),with higher activities found in NAC treated rats(L,M,and H),and an increasing trend with increase of NAC dose.The expressions of p-ERK1/2,p-JNK1/2 and p-p38 proteins in PM2.5 exposed lung tissue(P,L,M and H)was higher than controls(all P<0
基金Project supported by the Medical and Health Science and Technology Fund of Zhejiang Province(No.2016KYB224)the Scientific Research Fund of Zhejiang Chinese Medicine University(No.2015ZG17),China
文摘Exposure to fine ambient particulate matter(PM_(2.5)) is known to be associated with cardiovascular disease. To uncover the molecular mechanisms involved in cardiovascular toxicity of PM_(2.5), we investigated alterations in the protein profile of human umbilical vein endothelial cells(HUVECs) treated with PM_(2.5) using two-dimensional electrophoresis in conjunction with mass spectrometry(MS). A total of 31 protein spots were selected as differentially expressed proteins and identified by matrix-assisted laser desorption/ionization-time of flight(MALDI-TOF) MS. The results demonstrated that DNA damage and cell apoptosis are important factors contributing to PM_(2.5)-mediated toxicity in HUVECs. It is further proposed that PM_(2.5) can inhibit superoxide dismutase(SOD) activity and increase reactive oxygen species(ROS) and malonaldehyde(MDA) production in a concentration-dependent manner. Induction of apoptosis and DNA damage through oxidative stress pathways may be one of the key toxicological events occurring in HUVECs under PM_(2.5) stress. These results indicated that the toxic mechanisms of PM_(2.5) on cardiovascular disease are related to endothelial dysfunction.
基金financial assistance provided by IIT Delhi under new faculty start-up grant for establishing the testing facilities at the laboratory in the Department of Energy Science and Engineering.
文摘A disruptive approach to a fundamental process has been applied in a biomass combustion device with two variable speed fans to supply air for gasification and another for combustion processes,separately.Besides,the preheating of secondary air,required for combustion process was also ensured through annulus chamber before being fed into the combustion chamber.The turbulent flow and homogenous mixing were also ensured by controlling the flow rate resulting in the reduced emissions of carbon monoxide(CO)and fine particulate matter(PM 2.5,particulate matter having aerodynamic diameter<2.5 micron).The design approach applied here has also ensured the homogeneous mixing of preheated air with the volatiles,resulted in cleaner combustion.This arrangement has led to the emissions of PM2.5 and CO much better than those of the earlier cookstove models,and very close to that of a liquefied petroleum gas(LPG)stove.Further,the comparative analysis based on the modified star rating of total 15(14 are biomass and another LPG)cookstove models tested using the same standard methodology has been done and presented in this study.Based on the star rating,the performance of the LPG stove was found to be best and assigned as a 5-star product followed by the IITD model(4-star),while the other 13 models got different ratings starting from 1-star to 3-star,respectively.Also,the thermal performance of the IITD cookstove model is found to be the highest,while the emission characteristics are found to be the least among all biomass cookstove models,presented here.