AIM: To study the therapeutic effect of exogenous interleuldn-10 on CCl4-induced hepatic fibrosis in rats and its passible mechanisms. METHODS: Fourty-seven SD rats were randomly divided into control group (group N...AIM: To study the therapeutic effect of exogenous interleuldn-10 on CCl4-induced hepatic fibrosis in rats and its passible mechanisms. METHODS: Fourty-seven SD rats were randomly divided into control group (group N) and CCl4-induced hepatic fibrosis model group (group C). After CCl4 was given for 9 wk, the model group was divided into three groups. Rats in group H were put to death immediately, rats in group T were treated with IL-10 for another three wk and then put to death, rats in group R recovered after three weeks and were then killed. The degree of hepatic fibrosis was measured by HE staining and histological activity index (HAI). Histological activity index (HAI), change of collagen types Ⅰ and Ⅲ were measured by Picrosirius staining. The expression of TNF-α, HHP-2 and TIMP-1 in liver tissue was measured by S-P immunohis tochemistry.RESULTS: CCl4- induced experimental rat hepatic fibrosis model was established successfully. The degree of hepatic fibrosis was markedly lower in group T than in groups H and R, and there was no difference between the two groups. The expression of collagen types I and III was significantly suppressed in group T and was slightly suppressed in groups H and R. The positive levels of TNF-α, HHP-2 and TIHP-1 in group H increased significantly compared to those in group N (P〈0.01). The positive signals decreased significantly in groups T and R (P〈0.01), but positive score was significantly lower in group T than in group R (P〈 0.01). CONCLUS10N: Exogenous IL-10 can reverse CCl4-induced hepatic fibrosis in rats. IL-10 may exert its reversible effects on hepatic fibrosis by blocking CCl4-induced inflammation, inhibiting expression of HHP-2 and TIMP-1 and promoting resolution of collagen types Ⅰ and Ⅲ.展开更多
Matrix metalloproteinases(MMPs) are members of the neutral proteinase family. They were previously thought to be anti-fibrotic because of their ability to degrade and remodel of extracellular matrix. However, recent s...Matrix metalloproteinases(MMPs) are members of the neutral proteinase family. They were previously thought to be anti-fibrotic because of their ability to degrade and remodel of extracellular matrix. However, recent studies have shown that MMPs are implicated in initiation and progression of kidney fibrosis through tubular cell epithelial–mesenchymal transition(EMT) as well as activation of resident fibroblasts, endothelial-mesenchymal transition(Endo MT) and pericyte-myofibroblast transdifferentiation. Interstitial macrophage infiltration has also been shown to correlate with the severity of kidney fibrosis in various chronic kidney diseases. MMPs secreted by macrophages, especially MMP-9, hasbeen shown by us to be profibrotic by induction of tubular cells EMT. EMT is mainly induced by transforming growth factor-β(TGF-β). However, MMP-9 was found by us and others to be up-regulated by TGF-β1 in kidney tubular epithelial cells and secreted by activated macrophages, resulting in EMT and ultimately kidney fibrosis. Therefore, MMP-9 may serve as a potential therapeutic target to prevent kidney fibrosis in chronic kidney disease. This review, by a particular focus on EMT, seeks to provide a comprehensive understanding of MMPs, especially MMP-9, in kidney fibrosis.展开更多
AIM: To improve osteogenic differentiation and attachment of cells.METHODS: An electronic search was conducted inPub Med from January 2004 to December 2013. Studies which performed smart modifications on conventional ...AIM: To improve osteogenic differentiation and attachment of cells.METHODS: An electronic search was conducted inPub Med from January 2004 to December 2013. Studies which performed smart modifications on conventional bone scaffold materials were included. Scaffolds with controlled release or encapsulation of bioactive molecules were not included. Experiments which did not investigate response of cells toward the scaffold(cell attachment, proliferation or osteoblastic differentiation) were excluded. RESULTS: Among 1458 studies, 38 met the inclusion and exclusion criteria. The main scaffold varied extensively among the included studies. Smart modifications included addition of growth factors(group Ⅰ-11 studies), extracellular matrix-like molecules(group Ⅱ-13 studies) and nanoparticles(nano-HA)(group Ⅲ-17 studies). In all groups, surface coating was the most commonly applied approach for smart modification of scaffolds. In group I, bone morphogenetic proteins were mainly used as growth factor stabilized on polycaprolactone(PCL). In group Ⅱ, collagen 1 in combination with PCL, hydroxyapatite(HA) and tricalcium phosphate were the most frequent scaffolds used. In the third group, nano-HA with PCL and chitosan were used the most. As variable methods were used, a thorough and comprehensible compare between the results and approaches was unattainable.CONCLUSION: Regarding the variability in methodology of these in vitro studies it was demonstrated that smart modification of scaffolds can improve tissue properties.展开更多
Latent factor(LF) models are highly effective in extracting useful knowledge from High-Dimensional and Sparse(HiDS) matrices which are commonly seen in various industrial applications. An LF model usually adopts itera...Latent factor(LF) models are highly effective in extracting useful knowledge from High-Dimensional and Sparse(HiDS) matrices which are commonly seen in various industrial applications. An LF model usually adopts iterative optimizers,which may consume many iterations to achieve a local optima,resulting in considerable time cost. Hence, determining how to accelerate the training process for LF models has become a significant issue. To address this, this work proposes a randomized latent factor(RLF) model. It incorporates the principle of randomized learning techniques from neural networks into the LF analysis of HiDS matrices, thereby greatly alleviating computational burden. It also extends a standard learning process for randomized neural networks in context of LF analysis to make the resulting model represent an HiDS matrix correctly.Experimental results on three HiDS matrices from industrial applications demonstrate that compared with state-of-the-art LF models, RLF is able to achieve significantly higher computational efficiency and comparable prediction accuracy for missing data.I provides an important alternative approach to LF analysis of HiDS matrices, which is especially desired for industrial applications demanding highly efficient models.展开更多
AIM: To study the role of advanced glycation end products (AGE) and their specific receptor (RAGE) in the pathogenesis of liver fibrogenesis. METHODS: In vitro RAGE expression and extracellular matrix-related ge...AIM: To study the role of advanced glycation end products (AGE) and their specific receptor (RAGE) in the pathogenesis of liver fibrogenesis. METHODS: In vitro RAGE expression and extracellular matrix-related gene expression in both rat and human hepatic stellate cells (HSC) were measured after stimulation with the two RAGE ligands, advanced glycation end product-bovine serum albumin (AGE- BSA) and N'-(carboxymethyl) lysine (CML)-BSA, or with tumor necrosis factor-α (TNF-α). In vivo RAGE expression was examined in models of hepatic fibrosis induced by bile duct ligation or thioacetamide. The effects of AGE-BSA and CML-BSA on HSC proliferation, signal transduction and profibrogenic gene expression were studied in vitro. RESULTS: In hepatic fibrosis, RAGE expression was enhanced in activated HSC, and also in endothelial cells, inflammatory cells and activated bile duct epithelia. HSC expressed RAGE which was upregulated after stimulation with AGE-BSA, CML-BSA, and TNF-α.RAGE stimulation with AGE-BSA and CML-BSA did not alter HSC proliferation, apoptosis, fibrogenic signal transduction and fibrosis- or fibrolysis-related gene expression, except for marginal upregulation of procollagen α1( I ) mRNA by AGE-BSA. CONCLUSION: Despite upregulation of RAGE in activated HSC, RAGE stimulation by AGE does not alter their fibrogenic activation. Therefore, RAGE does not contribute directly to hepatic fibrogenesis.展开更多
基金Supported by Nature Science Foundation of Fujian Province. No.2005D094 and No.C0410025
文摘AIM: To study the therapeutic effect of exogenous interleuldn-10 on CCl4-induced hepatic fibrosis in rats and its passible mechanisms. METHODS: Fourty-seven SD rats were randomly divided into control group (group N) and CCl4-induced hepatic fibrosis model group (group C). After CCl4 was given for 9 wk, the model group was divided into three groups. Rats in group H were put to death immediately, rats in group T were treated with IL-10 for another three wk and then put to death, rats in group R recovered after three weeks and were then killed. The degree of hepatic fibrosis was measured by HE staining and histological activity index (HAI). Histological activity index (HAI), change of collagen types Ⅰ and Ⅲ were measured by Picrosirius staining. The expression of TNF-α, HHP-2 and TIMP-1 in liver tissue was measured by S-P immunohis tochemistry.RESULTS: CCl4- induced experimental rat hepatic fibrosis model was established successfully. The degree of hepatic fibrosis was markedly lower in group T than in groups H and R, and there was no difference between the two groups. The expression of collagen types I and III was significantly suppressed in group T and was slightly suppressed in groups H and R. The positive levels of TNF-α, HHP-2 and TIHP-1 in group H increased significantly compared to those in group N (P〈0.01). The positive signals decreased significantly in groups T and R (P〈0.01), but positive score was significantly lower in group T than in group R (P〈 0.01). CONCLUS10N: Exogenous IL-10 can reverse CCl4-induced hepatic fibrosis in rats. IL-10 may exert its reversible effects on hepatic fibrosis by blocking CCl4-induced inflammation, inhibiting expression of HHP-2 and TIMP-1 and promoting resolution of collagen types Ⅰ and Ⅲ.
文摘Matrix metalloproteinases(MMPs) are members of the neutral proteinase family. They were previously thought to be anti-fibrotic because of their ability to degrade and remodel of extracellular matrix. However, recent studies have shown that MMPs are implicated in initiation and progression of kidney fibrosis through tubular cell epithelial–mesenchymal transition(EMT) as well as activation of resident fibroblasts, endothelial-mesenchymal transition(Endo MT) and pericyte-myofibroblast transdifferentiation. Interstitial macrophage infiltration has also been shown to correlate with the severity of kidney fibrosis in various chronic kidney diseases. MMPs secreted by macrophages, especially MMP-9, hasbeen shown by us to be profibrotic by induction of tubular cells EMT. EMT is mainly induced by transforming growth factor-β(TGF-β). However, MMP-9 was found by us and others to be up-regulated by TGF-β1 in kidney tubular epithelial cells and secreted by activated macrophages, resulting in EMT and ultimately kidney fibrosis. Therefore, MMP-9 may serve as a potential therapeutic target to prevent kidney fibrosis in chronic kidney disease. This review, by a particular focus on EMT, seeks to provide a comprehensive understanding of MMPs, especially MMP-9, in kidney fibrosis.
文摘AIM: To improve osteogenic differentiation and attachment of cells.METHODS: An electronic search was conducted inPub Med from January 2004 to December 2013. Studies which performed smart modifications on conventional bone scaffold materials were included. Scaffolds with controlled release or encapsulation of bioactive molecules were not included. Experiments which did not investigate response of cells toward the scaffold(cell attachment, proliferation or osteoblastic differentiation) were excluded. RESULTS: Among 1458 studies, 38 met the inclusion and exclusion criteria. The main scaffold varied extensively among the included studies. Smart modifications included addition of growth factors(group Ⅰ-11 studies), extracellular matrix-like molecules(group Ⅱ-13 studies) and nanoparticles(nano-HA)(group Ⅲ-17 studies). In all groups, surface coating was the most commonly applied approach for smart modification of scaffolds. In group I, bone morphogenetic proteins were mainly used as growth factor stabilized on polycaprolactone(PCL). In group Ⅱ, collagen 1 in combination with PCL, hydroxyapatite(HA) and tricalcium phosphate were the most frequent scaffolds used. In the third group, nano-HA with PCL and chitosan were used the most. As variable methods were used, a thorough and comprehensible compare between the results and approaches was unattainable.CONCLUSION: Regarding the variability in methodology of these in vitro studies it was demonstrated that smart modification of scaffolds can improve tissue properties.
基金supported in part by the National Natural Science Foundation of China (6177249391646114)+1 种基金Chongqing research program of technology innovation and application (cstc2017rgzn-zdyfX0020)in part by the Pioneer Hundred Talents Program of Chinese Academy of Sciences
文摘Latent factor(LF) models are highly effective in extracting useful knowledge from High-Dimensional and Sparse(HiDS) matrices which are commonly seen in various industrial applications. An LF model usually adopts iterative optimizers,which may consume many iterations to achieve a local optima,resulting in considerable time cost. Hence, determining how to accelerate the training process for LF models has become a significant issue. To address this, this work proposes a randomized latent factor(RLF) model. It incorporates the principle of randomized learning techniques from neural networks into the LF analysis of HiDS matrices, thereby greatly alleviating computational burden. It also extends a standard learning process for randomized neural networks in context of LF analysis to make the resulting model represent an HiDS matrix correctly.Experimental results on three HiDS matrices from industrial applications demonstrate that compared with state-of-the-art LF models, RLF is able to achieve significantly higher computational efficiency and comparable prediction accuracy for missing data.I provides an important alternative approach to LF analysis of HiDS matrices, which is especially desired for industrial applications demanding highly efficient models.
基金Supported by Grants from the Interdisciplinary Center for Clinical Research(IZKF,Project B39)the Johannes and Frieda Marohn Foundation of the University of Erlangen-Nuremberg,Germany
文摘AIM: To study the role of advanced glycation end products (AGE) and their specific receptor (RAGE) in the pathogenesis of liver fibrogenesis. METHODS: In vitro RAGE expression and extracellular matrix-related gene expression in both rat and human hepatic stellate cells (HSC) were measured after stimulation with the two RAGE ligands, advanced glycation end product-bovine serum albumin (AGE- BSA) and N'-(carboxymethyl) lysine (CML)-BSA, or with tumor necrosis factor-α (TNF-α). In vivo RAGE expression was examined in models of hepatic fibrosis induced by bile duct ligation or thioacetamide. The effects of AGE-BSA and CML-BSA on HSC proliferation, signal transduction and profibrogenic gene expression were studied in vitro. RESULTS: In hepatic fibrosis, RAGE expression was enhanced in activated HSC, and also in endothelial cells, inflammatory cells and activated bile duct epithelia. HSC expressed RAGE which was upregulated after stimulation with AGE-BSA, CML-BSA, and TNF-α.RAGE stimulation with AGE-BSA and CML-BSA did not alter HSC proliferation, apoptosis, fibrogenic signal transduction and fibrosis- or fibrolysis-related gene expression, except for marginal upregulation of procollagen α1( I ) mRNA by AGE-BSA. CONCLUSION: Despite upregulation of RAGE in activated HSC, RAGE stimulation by AGE does not alter their fibrogenic activation. Therefore, RAGE does not contribute directly to hepatic fibrogenesis.