Covalent organic frameworks (COFs) were nano-coated onto single-walled carbon nanotubes (SWCNTs) by in situ polymerization of TpPa-COFs together with SWCNTs under solvotherma] conditions. At the molecular level, t...Covalent organic frameworks (COFs) were nano-coated onto single-walled carbon nanotubes (SWCNTs) by in situ polymerization of TpPa-COFs together with SWCNTs under solvotherma] conditions. At the molecular level, the COF/SWCNT interface can be efficiently controlled. Thus, the TpPa-COF-SWCNTs nano-hybrid wire, which combines the excellent conductivity of SWCNTs and the high porosity and good redox activity of TpPa-COFs, was employed as active electrode materials for supercapacitors. The strategy reported in this work can give guidance for the design of other similar COF-based electrodes, and hold a great potential in energy storages展开更多
基金supported by the National Natural Science Foundation of China (Nos.61774102,81670958)the Shanghai Pujiang Program (No.16PJD027)the Interdisciplinary Program of Shanghai Jiao Tong University (Nos.YG2015MS23,YG2016MS71)
文摘Covalent organic frameworks (COFs) were nano-coated onto single-walled carbon nanotubes (SWCNTs) by in situ polymerization of TpPa-COFs together with SWCNTs under solvotherma] conditions. At the molecular level, the COF/SWCNT interface can be efficiently controlled. Thus, the TpPa-COF-SWCNTs nano-hybrid wire, which combines the excellent conductivity of SWCNTs and the high porosity and good redox activity of TpPa-COFs, was employed as active electrode materials for supercapacitors. The strategy reported in this work can give guidance for the design of other similar COF-based electrodes, and hold a great potential in energy storages