Macroscopic materials are heterogeneous,multi-elementary,and complex.No material is homogeneous or isotropic at a certain small scale.Parts of the material that differ from one another can be termed"natural chips...Macroscopic materials are heterogeneous,multi-elementary,and complex.No material is homogeneous or isotropic at a certain small scale.Parts of the material that differ from one another can be termed"natural chips."At different spots on the material,the composition,structure,and properties vary slightly,and the combination of these slight differences establishes the overall material performance.This article presents a state-of-the-art review of research and applications of high-throughput statistical spatialmapping characterization technology based on the intrinsic heterogeneity within materials.Highthroughput statistical spatial-mapping uses a series of rapid characterization techniques for analysis from the macroscopic to the microscopic scale.Datasets of composition,structure,and properties at each location are obtained rapidly for practical sample sizes.Accurate positional coordinate information and references to a point-to-point correspondence are used to set up a database that contains spatialmapping lattices.Based on material research and development design requirements,dataset spatialmapping within required target intervals is selected from the database.Statistical analysis can be used to select a suitable design that better meets the targeted requirements.After repeated verification,genetic units that reflect the material properties are determined.By optimizing process parameters,the assembly of these genetic unit(s)is verified at the mesoscale,and quantitative correlations are established between the microscale,mesoscale,macroscale,practical sample,across-the-scale span composition,structure,and properties.The high-throughput statistical spatial-mapping characterization technology has been applied to numerous material systems,such as steels,superalloys,galvanization,and ferrosilicon alloys.This approach has guided the composition and the process optimization of various materials.展开更多
This study aims to develop a model to characterize the inhomogeneous material deformation behavior in micro-forming.First,the influence of individual grain heterogeneity on the deformation behavior of CuZn20 foils was...This study aims to develop a model to characterize the inhomogeneous material deformation behavior in micro-forming.First,the influence of individual grain heterogeneity on the deformation behavior of CuZn20 foils was investigated via tensile and micro-hardness tests.The results showed that different from thick sheets,the hardening behavior of grains in the deformation area of thin foils is not uniform.The flow stress of thin foils actually only reflects the average hardening behavior of several easy-deformation-grains,which is the reason that thinner foils own smaller flow stress.Then,a composite modeling method under consideration of individual grain heterogeneity was developed,where the effects of grain orientation and shape are quantitatively represented by the method of flow stress classification and Voronoi tessellation,respectively.This model provides an accurate and effective method to analyze the influence of individual grain heterogeneity on the deformation behavior of the micro-sized material.展开更多
The present study deals with free vibration analysis of variable thickness viscoelastic circular plates made of heterogeneous materials and resting on two-parameter elastic foundations in addition to their edge condit...The present study deals with free vibration analysis of variable thickness viscoelastic circular plates made of heterogeneous materials and resting on two-parameter elastic foundations in addition to their edge conditions. It is assumed that the viscoelastic material properties vary in the transverse and radial directions simultaneously. The complex modulus approach is employed in conjunction with the elastic-viscoelastic correspondence principle to obtain the solution. The governing equations are solved by means of a power series solution. Finally, a sensitivity analysis including evaluation of effects of various edge conditions, thickness variations, coefficients of the elastic foundation, and material loss factor and heterogeneity on the natural frequencies and modal loss factors is accomplished.展开更多
基金This research was supported by the National Key Research and Development Program of China(2016YFB0700300).The authors acknowledge helpful discussions with Profs.Hong Wang,Xiaodong Xiang,and Liang Jiang.We thank Laura Kuhar,Ph.D.from Liwen Bianji,Edanz Group China(www.liwenbianji.cn/ac),for editing the English text of a draft of this manuscript.
文摘Macroscopic materials are heterogeneous,multi-elementary,and complex.No material is homogeneous or isotropic at a certain small scale.Parts of the material that differ from one another can be termed"natural chips."At different spots on the material,the composition,structure,and properties vary slightly,and the combination of these slight differences establishes the overall material performance.This article presents a state-of-the-art review of research and applications of high-throughput statistical spatialmapping characterization technology based on the intrinsic heterogeneity within materials.Highthroughput statistical spatial-mapping uses a series of rapid characterization techniques for analysis from the macroscopic to the microscopic scale.Datasets of composition,structure,and properties at each location are obtained rapidly for practical sample sizes.Accurate positional coordinate information and references to a point-to-point correspondence are used to set up a database that contains spatialmapping lattices.Based on material research and development design requirements,dataset spatialmapping within required target intervals is selected from the database.Statistical analysis can be used to select a suitable design that better meets the targeted requirements.After repeated verification,genetic units that reflect the material properties are determined.By optimizing process parameters,the assembly of these genetic unit(s)is verified at the mesoscale,and quantitative correlations are established between the microscale,mesoscale,macroscale,practical sample,across-the-scale span composition,structure,and properties.The high-throughput statistical spatial-mapping characterization technology has been applied to numerous material systems,such as steels,superalloys,galvanization,and ferrosilicon alloys.This approach has guided the composition and the process optimization of various materials.
基金Project(51905362)supported by the National Natural Science Foundation of ChinaProjects(19KJB460022,18KJB130006)supported by the Natural Science Foundation of Jiangsu Higher Education Institution,China。
文摘This study aims to develop a model to characterize the inhomogeneous material deformation behavior in micro-forming.First,the influence of individual grain heterogeneity on the deformation behavior of CuZn20 foils was investigated via tensile and micro-hardness tests.The results showed that different from thick sheets,the hardening behavior of grains in the deformation area of thin foils is not uniform.The flow stress of thin foils actually only reflects the average hardening behavior of several easy-deformation-grains,which is the reason that thinner foils own smaller flow stress.Then,a composite modeling method under consideration of individual grain heterogeneity was developed,where the effects of grain orientation and shape are quantitatively represented by the method of flow stress classification and Voronoi tessellation,respectively.This model provides an accurate and effective method to analyze the influence of individual grain heterogeneity on the deformation behavior of the micro-sized material.
文摘The present study deals with free vibration analysis of variable thickness viscoelastic circular plates made of heterogeneous materials and resting on two-parameter elastic foundations in addition to their edge conditions. It is assumed that the viscoelastic material properties vary in the transverse and radial directions simultaneously. The complex modulus approach is employed in conjunction with the elastic-viscoelastic correspondence principle to obtain the solution. The governing equations are solved by means of a power series solution. Finally, a sensitivity analysis including evaluation of effects of various edge conditions, thickness variations, coefficients of the elastic foundation, and material loss factor and heterogeneity on the natural frequencies and modal loss factors is accomplished.