This paper proposes a control strategy that can realize seamless microgrid operation mode transition between grid-connected operation and stand-alone operation.The scenario of a microgrid based on master-slave control...This paper proposes a control strategy that can realize seamless microgrid operation mode transition between grid-connected operation and stand-alone operation.The scenario of a microgrid based on master-slave control is considered,where the master distributed generation(DG) unit operates in different control schemes in different microgrid operation modes,while other slave DG units operate with power/current control all the time.The proposed control strategy focuses on the master DG unit,and contains the control state/reference compensation algorithm and separation switch control logic.The proposed method can effectively reduce the impact on the critical loads and DG units caused by microgrid operation mode transitions.展开更多
In this paper, a mathematical model consisting of forward and backward models is built on parallel genetic algorithms (PGAs) for fault diagnosis in a transmission power system. A new method to reduce the scale of faul...In this paper, a mathematical model consisting of forward and backward models is built on parallel genetic algorithms (PGAs) for fault diagnosis in a transmission power system. A new method to reduce the scale of fault sections is developed in the forward model and the message passing interface (MPI) approach is chosen to parallel the genetic algorithms by global sin-gle-population master-slave method (GPGAs). The proposed approach is applied to a sample system consisting of 28 sections, 84 protective relays and 40 circuit breakers. Simulation results show that the new model based on GPGAs can achieve very fast computation in online applications of large-scale power systems.展开更多
The photovoltaic virtual synchronous generator(PV-VSG)solves the problem of lack of inertia in the PV power-generation system.The existing PV plants without energy storage are required to participate in the power grid...The photovoltaic virtual synchronous generator(PV-VSG)solves the problem of lack of inertia in the PV power-generation system.The existing PV plants without energy storage are required to participate in the power grid’s frequency modulation(FM),but existing PV-VSGs with energy storage have high requirements for coordinated control.Therefore,the active power reserve PV-VSG(APR-PV-VSG)is studied.Based on the different methods to obtain the maximum power point(MPP),the peer-to-peer and master-slave APR-PV-VSG strategies are proposed.The PV inverters are deviated from the MPP to reserve active power,which is used as the virtual inertia and primary FM power.These methods equip the PV power station with FM capability.The effectiveness of the proposed control strategies is verified by simulation results.展开更多
As a key component of injection molding,multi-cavity hot runner(MCHR)system faces the crucial problem of polymer melt filling imbalance among the cavities.The thermal imbalance in the system has been considered as the...As a key component of injection molding,multi-cavity hot runner(MCHR)system faces the crucial problem of polymer melt filling imbalance among the cavities.The thermal imbalance in the system has been considered as the leading cause.Hence,the solution may rest with the synchronization of those heating processes in MCHR system.This paper proposes a’Master-Slave’generalized predictive synchronization control(MS-GPSC)method with’Mr.Slowest’strategy for preheating stage of MCHR system.The core of the proposed method is choosing the heating process with slowest dynamics as the’Master’to track the setpoint,while the other heating processes are treated as‘Slaves’tracking the output of’Master’.This proposed method is shown to have the good ability of temperature synchronization.The corresponding analysis is conducted on parameters tuning and stability,simulations and experiments show the strategy is effective.展开更多
基金supported by the National Basic Research Program of China ("973" Project) (Grant No. 2009CB219700)the National Natural Science Foundation of China (Grant No. 50837001)
文摘This paper proposes a control strategy that can realize seamless microgrid operation mode transition between grid-connected operation and stand-alone operation.The scenario of a microgrid based on master-slave control is considered,where the master distributed generation(DG) unit operates in different control schemes in different microgrid operation modes,while other slave DG units operate with power/current control all the time.The proposed control strategy focuses on the master DG unit,and contains the control state/reference compensation algorithm and separation switch control logic.The proposed method can effectively reduce the impact on the critical loads and DG units caused by microgrid operation mode transitions.
基金the National Natural Science Foundation of China (No. 50677062)the New Century Excellent Talents in Uni-versity of China (No. NCET-07-0745)the Natural Science Foundation of Zhejiang Province, China (No. R107062)
文摘In this paper, a mathematical model consisting of forward and backward models is built on parallel genetic algorithms (PGAs) for fault diagnosis in a transmission power system. A new method to reduce the scale of fault sections is developed in the forward model and the message passing interface (MPI) approach is chosen to parallel the genetic algorithms by global sin-gle-population master-slave method (GPGAs). The proposed approach is applied to a sample system consisting of 28 sections, 84 protective relays and 40 circuit breakers. Simulation results show that the new model based on GPGAs can achieve very fast computation in online applications of large-scale power systems.
基金Supported by the Joint Funds of the National Natural Science Foundation of China(U1766207).
文摘The photovoltaic virtual synchronous generator(PV-VSG)solves the problem of lack of inertia in the PV power-generation system.The existing PV plants without energy storage are required to participate in the power grid’s frequency modulation(FM),but existing PV-VSGs with energy storage have high requirements for coordinated control.Therefore,the active power reserve PV-VSG(APR-PV-VSG)is studied.Based on the different methods to obtain the maximum power point(MPP),the peer-to-peer and master-slave APR-PV-VSG strategies are proposed.The PV inverters are deviated from the MPP to reserve active power,which is used as the virtual inertia and primary FM power.These methods equip the PV power station with FM capability.The effectiveness of the proposed control strategies is verified by simulation results.
基金supported in part by National Natural Science Foundation of China(62203127)Basic and Applied Basic Research Project of Guangzhou City(2023A04J1712)+1 种基金The Foshan-HKUST Projects Program(FSUST19-FYTRI01)GDAS’Project of Science and Technology Development(2020GDASYL-20200202001).
文摘As a key component of injection molding,multi-cavity hot runner(MCHR)system faces the crucial problem of polymer melt filling imbalance among the cavities.The thermal imbalance in the system has been considered as the leading cause.Hence,the solution may rest with the synchronization of those heating processes in MCHR system.This paper proposes a’Master-Slave’generalized predictive synchronization control(MS-GPSC)method with’Mr.Slowest’strategy for preheating stage of MCHR system.The core of the proposed method is choosing the heating process with slowest dynamics as the’Master’to track the setpoint,while the other heating processes are treated as‘Slaves’tracking the output of’Master’.This proposed method is shown to have the good ability of temperature synchronization.The corresponding analysis is conducted on parameters tuning and stability,simulations and experiments show the strategy is effective.