Dynamic response of multispan viscoelastic thin beams subjected to a moving mass is studied by an efficient numerical method in some detail. To this end, the unknown parameters of the problem are discretized in spatia...Dynamic response of multispan viscoelastic thin beams subjected to a moving mass is studied by an efficient numerical method in some detail. To this end, the unknown parameters of the problem are discretized in spatial domain using generalized moving least square method (GMLSM) and then, discrete equations of motion based on Lagrange's equation are obtained. Maximum deflection and bending moments are considered as the important design parameters. The design parameter spectra in terms of mass weight and velocity of the moving mass are presented for multispan viscoelastic beams as well as various values of relaxation rate and beam span number. A reasonable good agreement is achieved between the results of the proposed solution and those obtained by other researchers. The results indicate that, although the load inertia effects in beams with higher span number would be intensified for higher levels of moving mass velocity, the maximum values of design parameters would increase either. Moreover, the possibility of mass separation is shown to be more critical as the span number of the beam increases. This fact also violates the linear relation between the mass weight of the moving load and the associated design parameters, especially for high moving mass velocities. However, as the relaxation rate of the beam material increases, the load inertia effects as well as the possibility of moving mass separation reduces.展开更多
This paper deals with the capabilities of linear and nonlinear beam theories in predicting the dynamic response of an elastically supported thin beam traversed by a moving mass. To this end, the discrete equations of ...This paper deals with the capabilities of linear and nonlinear beam theories in predicting the dynamic response of an elastically supported thin beam traversed by a moving mass. To this end, the discrete equations of motion are developed based on Lagrange's equations via reproducing kernel particle method (RKPM). For a particular case of a simply supported beam, Galerkin method is also employed to verify the results obtained by RKPM, and a reasonably good agreement is achieved. Variations of the maximum dynamic deflection and bending moment associated with the linear and nonlinear beam theories are investigated in terms of moving mass weight and velocity for various beam boundary conditions. It is demonstrated that for majority of the moving mass velocities, the differences between the results of linear and nonlinear analyses become remarkable as the moving mass weight increases, particularly for high levels of moving mass velocity. Except for the cantilever beam, the nonlinear beam theory predicts higher possibility of moving mass separation from the base beam compared to the linear one. Furthermore, the accuracy levels of the linear beam theory are determined for thin beams under large deflections and small rotations as a function of moving mass weight and velocity in various boundary conditions.展开更多
The azimuthator is an important part of plasma optical mass separation.The existing design for an azimuthator is based on the single particle orbit theory and focused on the movement of ions.In this paper,the particle...The azimuthator is an important part of plasma optical mass separation.The existing design for an azimuthator is based on the single particle orbit theory and focused on the movement of ions.In this paper,the particle simulation method is adopted to study the behavior of plasma crossing an azimuthator.The results show that electrons are bounded at the entrance of the azimuthator and an axial electric field is produced due to the charge separation.In order to better achieve the function of the azimuthator,a cathode is designed to transmit the electrons and to obtain a quasi-neutral plasma beam.展开更多
文摘Dynamic response of multispan viscoelastic thin beams subjected to a moving mass is studied by an efficient numerical method in some detail. To this end, the unknown parameters of the problem are discretized in spatial domain using generalized moving least square method (GMLSM) and then, discrete equations of motion based on Lagrange's equation are obtained. Maximum deflection and bending moments are considered as the important design parameters. The design parameter spectra in terms of mass weight and velocity of the moving mass are presented for multispan viscoelastic beams as well as various values of relaxation rate and beam span number. A reasonable good agreement is achieved between the results of the proposed solution and those obtained by other researchers. The results indicate that, although the load inertia effects in beams with higher span number would be intensified for higher levels of moving mass velocity, the maximum values of design parameters would increase either. Moreover, the possibility of mass separation is shown to be more critical as the span number of the beam increases. This fact also violates the linear relation between the mass weight of the moving load and the associated design parameters, especially for high moving mass velocities. However, as the relaxation rate of the beam material increases, the load inertia effects as well as the possibility of moving mass separation reduces.
文摘This paper deals with the capabilities of linear and nonlinear beam theories in predicting the dynamic response of an elastically supported thin beam traversed by a moving mass. To this end, the discrete equations of motion are developed based on Lagrange's equations via reproducing kernel particle method (RKPM). For a particular case of a simply supported beam, Galerkin method is also employed to verify the results obtained by RKPM, and a reasonably good agreement is achieved. Variations of the maximum dynamic deflection and bending moment associated with the linear and nonlinear beam theories are investigated in terms of moving mass weight and velocity for various beam boundary conditions. It is demonstrated that for majority of the moving mass velocities, the differences between the results of linear and nonlinear analyses become remarkable as the moving mass weight increases, particularly for high levels of moving mass velocity. Except for the cantilever beam, the nonlinear beam theory predicts higher possibility of moving mass separation from the base beam compared to the linear one. Furthermore, the accuracy levels of the linear beam theory are determined for thin beams under large deflections and small rotations as a function of moving mass weight and velocity in various boundary conditions.
基金supported by National Natural Science Foundation of China(Nos.51207033 and 11275034)the International Scientific and Technological Cooperation Projects of China(No.2011DFR60130)+1 种基金Liaoning Province Science and Technology Plan Project of China(No.2011224007)the Fundamental Research Funds for the Central Universities of Ministry of Education of China(No.3132014328)
文摘The azimuthator is an important part of plasma optical mass separation.The existing design for an azimuthator is based on the single particle orbit theory and focused on the movement of ions.In this paper,the particle simulation method is adopted to study the behavior of plasma crossing an azimuthator.The results show that electrons are bounded at the entrance of the azimuthator and an axial electric field is produced due to the charge separation.In order to better achieve the function of the azimuthator,a cathode is designed to transmit the electrons and to obtain a quasi-neutral plasma beam.