Silicon monoxide(SiO)is an attractive anode material for next-generation lithium-ion batteries for its ultra-high theoretical capacity of 2680 mAh g−1.The studies to date have been limited to electrodes with a rela-ti...Silicon monoxide(SiO)is an attractive anode material for next-generation lithium-ion batteries for its ultra-high theoretical capacity of 2680 mAh g−1.The studies to date have been limited to electrodes with a rela-tively low mass loading(<3.5 mg cm^(−2)),which has seriously restricted the areal capacity and its potential in practical devices.Maximizing areal capacity with such high-capacity materials is critical for capitalizing their potential in practi-cal technologies.Herein,we report a monolithic three-dimensional(3D)large-sheet holey gra-phene framework/SiO(LHGF/SiO)composite for high-mass-loading electrode.By specifically using large-sheet holey graphene building blocks,we construct LHGF with super-elasticity and exceptional mechanical robustness,which is essential for accommodating the large volume change of SiO and ensuring the structure integrity even at ultrahigh mass loading.Additionally,the 3D porous graphene network structure in LHGF ensures excellent electron and ion transport.By systematically tailoring microstructure design,we show the LHGF/SiO anode with a mass loading of 44 mg cm^(−2)delivers a high areal capacity of 35.4 mAh cm^(−2)at a current of 8.8 mA cm^(−2)and retains a capacity of 10.6 mAh cm^(−2)at 17.6 mA cm^(−2),greatly exceeding those of the state-of-the-art commercial or research devices.Furthermore,we show an LHGF/SiO anode with an ultra-high mass loading of 94 mg cm^(−2)delivers an unprecedented areal capacity up to 140.8 mAh cm^(−2).The achievement of such high areal capacities marks a critical step toward realizing the full potential of high-capacity alloy-type electrode materials in practical lithium-ion batteries.展开更多
The growing demand for advanced electrochemical energy storage systems(EESSs)with high energy densities for electric vehicles and portable electronics is driving the electrode revolution,in which the development of hi...The growing demand for advanced electrochemical energy storage systems(EESSs)with high energy densities for electric vehicles and portable electronics is driving the electrode revolution,in which the development of high-mass-loading electrodes(HMLEs)is a promising route to improve the energy density of batteries packed in limited spaces through the optimal enlargement of active material loading ratios and reduction of inactive component ratios in overall cell devices.However,HMLEs face significant challenges including inferior charge kinetics,poor electrode structural stability,and complex and expensive production processes.Based on this,this review will provide a comprehensive summary of HMLEs,beginning with a basic presentation of factors influencing HMLE electrochemical properties,the understanding of which can guide optimal HMLE designs.Rational strategies to improve the electrochemical performance of HMLEs accompanied by corresponding advantages and bottlenecks are subsequently discussed in terms of various factors ranging from inactive component modification to active material design to structural engineering at the electrode scale.This review will also present the recent progress and approaches of HMLEs applied in various EESSs,including advanced secondary batteries(lithium-/sodium-/potassium-/aluminum-/calcium-ion batteries,lithium metal anodes,lithium-sulfur batteries,lithium-air batteries,zinc batteries,magnesium batteries)and supercapacitors.Finally,this review will examine the challenges and prospects of HMLE commercialization with a focus on thermal safety,performance evaluation,advanced characterization,and production cost assessment to guide future development.展开更多
The flow field distribution in centrifugal compressor is significantly affected by the non-axisymmetric geometry structure of the volute.The experimental and numerical simulation methods were adopted in this work to s...The flow field distribution in centrifugal compressor is significantly affected by the non-axisymmetric geometry structure of the volute.The experimental and numerical simulation methods were adopted in this work to study the compressor flow field distribution with different flow conditions.The results show that the pressure distribution in volute is characterized by the circumferential non-uniform phenomenon and the pressure fluctuation on the high static pressure zone propagates reversely to upstream,which results in the non-axisymmetric flow inside the compressor.The non-uniform level of pressure distribution in large flow condition is higher than that in small flow condition,its effect on the upstream flow field is also stronger.Additionally,the non-uniform circumferential pressure distribution in volute brings the non-axisymmetric flow at impeller outlet.In different flow conditions,the circumferential variation of the absolute flow angle at impeller outlet is also different.Meanwhile,the non-axisymmetric flow characteristics in internal impeller can be also reflected by the distribution of the mass flow.The high static pressure region of the volute corresponds to the decrease of mass flow in upstream blade channel,while the low static pressure zone of the volute corresponds to the increase of the mass flow.In small flow condition,the mass flow difference in the blade channel is bigger than that in the large flow condition.展开更多
Mass loading and potential plateau are the two most important issues of potassium(K)-ion batteries(KIBs),but they have long been ignored in previous studies.Herein,we report a simple and scalable method to fabricate a...Mass loading and potential plateau are the two most important issues of potassium(K)-ion batteries(KIBs),but they have long been ignored in previous studies.Herein,we report a simple and scalable method to fabricate acidized carbon clothes(A-CC)as high mass loading(13.1 mg cm−2)anode for KIBs,which achieved a reversible areal-specific capacity of 1.81 mAh cm−2 at 0.2 mA cm−2.Besides,we have proposed the concept of“relative energy density”to reasonably evaluate the electrochemical performance of the anode.According to our calculation method,the A-CC electrode exhibited an ultrahigh relative energy density of 46 Wh m−2 in the initial charge process and remained at 40 Wh m−2 after 50 cycles.Furthermore,we performed the operando Raman spectroscopy(ORS)to investigate the K-ion storage mechanism.We believe that our work might provide a new guideline for the evaluation of anode performance,thereby,opening an avenue for the development of commercial anode.展开更多
As one of the most important micro energy storage devices(MESDs),graphene-based micro-supercapacitors(G-MSCs)possess the advantages of excellent flexibility,long cycle life,affordability and high reliability.In most c...As one of the most important micro energy storage devices(MESDs),graphene-based micro-supercapacitors(G-MSCs)possess the advantages of excellent flexibility,long cycle life,affordability and high reliability.In most cases,constructing three-dimensional(3D)graphene networks is widely utilized to promote the permeation of electrolyte and enhance the utilization of active materials.In this work,conventional freeze-drying process is utilized in the fabrication of G-MSCs to constitute 3D interconnected networks micro-electrodes,and further by regulating the composition of inks,carbon spheres(CSs)at different mass loadings are introduced into the graphene scaffolds to further increase the active sites of the micro-electrodes.The fabricated all carbon-based MSC with the optimal mass loading of CSs(0.406 mg cm^(-2))exhibits a high specific areal capacitance of 17.01mF cm^(-2)at the scan rate of 10mV s^(-1)and a capacitance retention of 93.14%after 10000 cycles at the scan rate of 500 mV s^(-1).The proposed microfabrication process is facile and fully compatible with modern microtechnologies and will be highly suitable for large-scale production and integration.展开更多
The advancement of supercapacitors(SCs)is closely bound up with the breakthrough of rational design of energy materials.Freestanding and thick carbon(FTC)materials with well-organized porous structure is promising SC ...The advancement of supercapacitors(SCs)is closely bound up with the breakthrough of rational design of energy materials.Freestanding and thick carbon(FTC)materials with well-organized porous structure is promising SC electrode delivering high areal capacitive performance.However,controllable and sustainable fabrication of such FTC electrode is still of great challenges.Inspired by natural honeycombs with cross-linked multichannel structure,herein,an innovative molecular-cooperative-interaction strategy is elaborately provided to realize honeycomb-like FTC electrodes.The nitrogen-doped porous carbon monolith(N-PCM)is obtained with advantages of interconnect pore structure and abundant nitrogen doping.Such strategy is based on naturally abundant molecular precursors,and free of pore-templates,expensive polymerization catalyst,and dangerous reaction solvent,rendering it a sustainable and cost-effective process.Systematic control experiments reveal that strong interactions among molecular precursors promise the structural stability of N-PCM during carbonization,and rational selection of molecular precursors with chemical blowing features is key step for well-developed honeycomb-like pore structure.Interestingly,the optimized sample exhibits hierarchical pore structure with specific surface area of 626.4 m^(2)g^(-1)and rational N-doping of 7.01 wt%.The derived SC electrode with high mass loading of 40.1 mg cm^(-2)shows an excellent areal capacitance of 3621 mF cm^(-2)at 1 mA cm^(-2)and good rate performance with 2920 mF cm^(-2)at 25 mA cm^(-2).Moreover,the constructed aqueous symmetric SC and quasi-solid-state SC produce high energy densities of 0.32 and 0.27 mWh cm^(-2),respectively.We believe that such a composition/microstructure controllable method can promote the fabrication and development of other thick electrodes for energy storage devices.展开更多
Fiber supercapacitor(FSC)is a promising power source for wearable/stretchable electronics and high capacitive performance of FSCs is highly desirable for practice flexible applications.Here,we report a composite of ma...Fiber supercapacitor(FSC)is a promising power source for wearable/stretchable electronics and high capacitive performance of FSCs is highly desirable for practice flexible applications.Here,we report a composite of manganese dioxide(Mn O_2)and activated carbon fibers(ACFs)with high MnO_2mass loading and microporous structure(abbreviated as Mn O_2@ACF),which is used as a fiber electrode to produce a FSC with a high capacitive performance and a good flexibility.The MnO_2@ACF composite electrode in FSCs delivers an ultrahigh specific capacitance of 410 mF/cm^2at 0.1 mA/cm^2,corresponding to a high energy density of 36μWh/cm^2and high power density of 726μW/cm^2.Such high capacitive performance and simple fabrication method indicates that the Mn O_2@ACF composite is a very promising electrode material for flexible fiber supercapacitors.展开更多
基金support by the National Natural Science Foundation of China(Nos.52074113,22005091)the Fundamental Research Funds of the Central Universities(No.531107051048)+6 种基金the Changsha Municipal Natural Science Foundantion(Grant No.43184)the CITIC Metals Ningbo Energy Co.Ltd.(No.H202191380246)Xidong Duan acknowledges support by the National Natural Science Foundation of China(Nos.51991343,51991340,61804050 and 51872086)the Hunan Key Laboratory of Two-Dimensional Materials(No.2018TP1010)Junfei Liang acknowledges support by the National Natural Science Foundation of China(No.U1910208)the National Natural Science Foundation of Shanxi Province(No.201901D111137)Tao Wang acknowledges support by the National Natural Science Foundation of China(No.22005092).
文摘Silicon monoxide(SiO)is an attractive anode material for next-generation lithium-ion batteries for its ultra-high theoretical capacity of 2680 mAh g−1.The studies to date have been limited to electrodes with a rela-tively low mass loading(<3.5 mg cm^(−2)),which has seriously restricted the areal capacity and its potential in practical devices.Maximizing areal capacity with such high-capacity materials is critical for capitalizing their potential in practi-cal technologies.Herein,we report a monolithic three-dimensional(3D)large-sheet holey gra-phene framework/SiO(LHGF/SiO)composite for high-mass-loading electrode.By specifically using large-sheet holey graphene building blocks,we construct LHGF with super-elasticity and exceptional mechanical robustness,which is essential for accommodating the large volume change of SiO and ensuring the structure integrity even at ultrahigh mass loading.Additionally,the 3D porous graphene network structure in LHGF ensures excellent electron and ion transport.By systematically tailoring microstructure design,we show the LHGF/SiO anode with a mass loading of 44 mg cm^(−2)delivers a high areal capacity of 35.4 mAh cm^(−2)at a current of 8.8 mA cm^(−2)and retains a capacity of 10.6 mAh cm^(−2)at 17.6 mA cm^(−2),greatly exceeding those of the state-of-the-art commercial or research devices.Furthermore,we show an LHGF/SiO anode with an ultra-high mass loading of 94 mg cm^(−2)delivers an unprecedented areal capacity up to 140.8 mAh cm^(−2).The achievement of such high areal capacities marks a critical step toward realizing the full potential of high-capacity alloy-type electrode materials in practical lithium-ion batteries.
基金the National Basic Research Program of China(Grant No.2015CB251100)the National Natural Science Foundation of China(Grant No.21975026)the Beijing Natural Science Foundation(Grant No.L182056).
文摘The growing demand for advanced electrochemical energy storage systems(EESSs)with high energy densities for electric vehicles and portable electronics is driving the electrode revolution,in which the development of high-mass-loading electrodes(HMLEs)is a promising route to improve the energy density of batteries packed in limited spaces through the optimal enlargement of active material loading ratios and reduction of inactive component ratios in overall cell devices.However,HMLEs face significant challenges including inferior charge kinetics,poor electrode structural stability,and complex and expensive production processes.Based on this,this review will provide a comprehensive summary of HMLEs,beginning with a basic presentation of factors influencing HMLE electrochemical properties,the understanding of which can guide optimal HMLE designs.Rational strategies to improve the electrochemical performance of HMLEs accompanied by corresponding advantages and bottlenecks are subsequently discussed in terms of various factors ranging from inactive component modification to active material design to structural engineering at the electrode scale.This review will also present the recent progress and approaches of HMLEs applied in various EESSs,including advanced secondary batteries(lithium-/sodium-/potassium-/aluminum-/calcium-ion batteries,lithium metal anodes,lithium-sulfur batteries,lithium-air batteries,zinc batteries,magnesium batteries)and supercapacitors.Finally,this review will examine the challenges and prospects of HMLE commercialization with a focus on thermal safety,performance evaluation,advanced characterization,and production cost assessment to guide future development.
基金sponsored by the National Natural Science Foundation of China(No.51276017)
文摘The flow field distribution in centrifugal compressor is significantly affected by the non-axisymmetric geometry structure of the volute.The experimental and numerical simulation methods were adopted in this work to study the compressor flow field distribution with different flow conditions.The results show that the pressure distribution in volute is characterized by the circumferential non-uniform phenomenon and the pressure fluctuation on the high static pressure zone propagates reversely to upstream,which results in the non-axisymmetric flow inside the compressor.The non-uniform level of pressure distribution in large flow condition is higher than that in small flow condition,its effect on the upstream flow field is also stronger.Additionally,the non-uniform circumferential pressure distribution in volute brings the non-axisymmetric flow at impeller outlet.In different flow conditions,the circumferential variation of the absolute flow angle at impeller outlet is also different.Meanwhile,the non-axisymmetric flow characteristics in internal impeller can be also reflected by the distribution of the mass flow.The high static pressure region of the volute corresponds to the decrease of mass flow in upstream blade channel,while the low static pressure zone of the volute corresponds to the increase of the mass flow.In small flow condition,the mass flow difference in the blade channel is bigger than that in the large flow condition.
基金supports from the National Natural Science Foundation of China(51702056 and 51772135)the Ministry of Education of China(6141A02022516),China Postdoctoral Science Foundation(2017M622902 and 2019T120790)+1 种基金funding from the University of Macao(SRG2016-00092-IAPME,MYRG2018-00079-IAPME,and MYRG2019-00115IAPME)the Science and Technology Development Fund,Macao SAR(FDCT081/2017/A2,FDCT0059/2018/A2,and FDCT009/2017/AMJ).
文摘Mass loading and potential plateau are the two most important issues of potassium(K)-ion batteries(KIBs),but they have long been ignored in previous studies.Herein,we report a simple and scalable method to fabricate acidized carbon clothes(A-CC)as high mass loading(13.1 mg cm−2)anode for KIBs,which achieved a reversible areal-specific capacity of 1.81 mAh cm−2 at 0.2 mA cm−2.Besides,we have proposed the concept of“relative energy density”to reasonably evaluate the electrochemical performance of the anode.According to our calculation method,the A-CC electrode exhibited an ultrahigh relative energy density of 46 Wh m−2 in the initial charge process and remained at 40 Wh m−2 after 50 cycles.Furthermore,we performed the operando Raman spectroscopy(ORS)to investigate the K-ion storage mechanism.We believe that our work might provide a new guideline for the evaluation of anode performance,thereby,opening an avenue for the development of commercial anode.
基金This work was supported by the National Natural Science Fund for Distinguished Young Scholars(51425204)the National Natural Science Foundation of China(51521001,51502227,51579198,51802239)+6 种基金the National Key Research and Development Program of China(2016YFA0202603,2016YFA0202604)the Programme of Introducing Talents of Discipline to Universities(B17034)the China Postdoctoral Science Foundation(2015T80845)the Yellow Crane Talent(Science&Technology)Program of Wuhan Citythe Wuhan Morning Light Plan of Youth Science and Technology(No.2017050304010316)the Fundamental Research Funds for the Central Universities(WUT:2017III005,2017III009,2018IVA091)the Students innovation and entrepreneurship training program(WUT:20171049701005).
文摘As one of the most important micro energy storage devices(MESDs),graphene-based micro-supercapacitors(G-MSCs)possess the advantages of excellent flexibility,long cycle life,affordability and high reliability.In most cases,constructing three-dimensional(3D)graphene networks is widely utilized to promote the permeation of electrolyte and enhance the utilization of active materials.In this work,conventional freeze-drying process is utilized in the fabrication of G-MSCs to constitute 3D interconnected networks micro-electrodes,and further by regulating the composition of inks,carbon spheres(CSs)at different mass loadings are introduced into the graphene scaffolds to further increase the active sites of the micro-electrodes.The fabricated all carbon-based MSC with the optimal mass loading of CSs(0.406 mg cm^(-2))exhibits a high specific areal capacitance of 17.01mF cm^(-2)at the scan rate of 10mV s^(-1)and a capacitance retention of 93.14%after 10000 cycles at the scan rate of 500 mV s^(-1).The proposed microfabrication process is facile and fully compatible with modern microtechnologies and will be highly suitable for large-scale production and integration.
基金Guangdong Science and Technology Department,Grant/Award Number:2020B0909030004National Natural Science Foundation of China,Grant/Award Number:21975026。
文摘The advancement of supercapacitors(SCs)is closely bound up with the breakthrough of rational design of energy materials.Freestanding and thick carbon(FTC)materials with well-organized porous structure is promising SC electrode delivering high areal capacitive performance.However,controllable and sustainable fabrication of such FTC electrode is still of great challenges.Inspired by natural honeycombs with cross-linked multichannel structure,herein,an innovative molecular-cooperative-interaction strategy is elaborately provided to realize honeycomb-like FTC electrodes.The nitrogen-doped porous carbon monolith(N-PCM)is obtained with advantages of interconnect pore structure and abundant nitrogen doping.Such strategy is based on naturally abundant molecular precursors,and free of pore-templates,expensive polymerization catalyst,and dangerous reaction solvent,rendering it a sustainable and cost-effective process.Systematic control experiments reveal that strong interactions among molecular precursors promise the structural stability of N-PCM during carbonization,and rational selection of molecular precursors with chemical blowing features is key step for well-developed honeycomb-like pore structure.Interestingly,the optimized sample exhibits hierarchical pore structure with specific surface area of 626.4 m^(2)g^(-1)and rational N-doping of 7.01 wt%.The derived SC electrode with high mass loading of 40.1 mg cm^(-2)shows an excellent areal capacitance of 3621 mF cm^(-2)at 1 mA cm^(-2)and good rate performance with 2920 mF cm^(-2)at 25 mA cm^(-2).Moreover,the constructed aqueous symmetric SC and quasi-solid-state SC produce high energy densities of 0.32 and 0.27 mWh cm^(-2),respectively.We believe that such a composition/microstructure controllable method can promote the fabrication and development of other thick electrodes for energy storage devices.
基金supported by the National Natural Science Foundation of China (No. 51702229, and No. 51525204)the National Key Basic Research Program of China (2014CB932400)
文摘Fiber supercapacitor(FSC)is a promising power source for wearable/stretchable electronics and high capacitive performance of FSCs is highly desirable for practice flexible applications.Here,we report a composite of manganese dioxide(Mn O_2)and activated carbon fibers(ACFs)with high MnO_2mass loading and microporous structure(abbreviated as Mn O_2@ACF),which is used as a fiber electrode to produce a FSC with a high capacitive performance and a good flexibility.The MnO_2@ACF composite electrode in FSCs delivers an ultrahigh specific capacitance of 410 mF/cm^2at 0.1 mA/cm^2,corresponding to a high energy density of 36μWh/cm^2and high power density of 726μW/cm^2.Such high capacitive performance and simple fabrication method indicates that the Mn O_2@ACF composite is a very promising electrode material for flexible fiber supercapacitors.