期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于掩码时间注意力和置信度损失函数的序列数据早期分类方法
1
作者
陈慧玲
张晔
+1 位作者
田奥升
赵晗馨
《智能计算机与应用》
2023年第7期27-32,共6页
序列数据的早期分类对于高时效性应用具有重要意义。该任务的目标是在满足预期分类精度的前提下,尽快地对持续输入的时间序列进行分类。目前,深度学习已经在序列数据早期分类任务中得到了广泛应用。现有的深度方法通常利用递归神经网络...
序列数据的早期分类对于高时效性应用具有重要意义。该任务的目标是在满足预期分类精度的前提下,尽快地对持续输入的时间序列进行分类。目前,深度学习已经在序列数据早期分类任务中得到了广泛应用。现有的深度方法通常利用递归神经网络来适应流数据的长度变化,并通过设置分类概率阈值退出分类过程。然而这些方法忽视了流数据的关键识别区域随信息量的增加持续变化。为了解决该问题,本文提出了一种基于掩码时间注意力机制的时间卷积网络来动态关注关键识别区域。此外,考虑到正确类别的分类概率分数应随模型观察到更多数据单调不递减,本文设计了一个置信度损失函数惩罚不符合该条件的模型,进一步促使模型提取更有区分性的特征。在8个公开数据集的实验结果表明了所提方法优越的早期分类性能。
展开更多
关键词
序列数据早期分类
掩码时间注意力
置信度损失函数
时间卷积网络
下载PDF
职称材料
题名
基于掩码时间注意力和置信度损失函数的序列数据早期分类方法
1
作者
陈慧玲
张晔
田奥升
赵晗馨
机构
国防科技大学电子科学学院
出处
《智能计算机与应用》
2023年第7期27-32,共6页
文摘
序列数据的早期分类对于高时效性应用具有重要意义。该任务的目标是在满足预期分类精度的前提下,尽快地对持续输入的时间序列进行分类。目前,深度学习已经在序列数据早期分类任务中得到了广泛应用。现有的深度方法通常利用递归神经网络来适应流数据的长度变化,并通过设置分类概率阈值退出分类过程。然而这些方法忽视了流数据的关键识别区域随信息量的增加持续变化。为了解决该问题,本文提出了一种基于掩码时间注意力机制的时间卷积网络来动态关注关键识别区域。此外,考虑到正确类别的分类概率分数应随模型观察到更多数据单调不递减,本文设计了一个置信度损失函数惩罚不符合该条件的模型,进一步促使模型提取更有区分性的特征。在8个公开数据集的实验结果表明了所提方法优越的早期分类性能。
关键词
序列数据早期分类
掩码时间注意力
置信度损失函数
时间卷积网络
Keywords
early
time
series
classification
masked
time
attention
confidence
loss
function
temporal
convolutional
network
分类号
TP391.4 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于掩码时间注意力和置信度损失函数的序列数据早期分类方法
陈慧玲
张晔
田奥升
赵晗馨
《智能计算机与应用》
2023
0
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部