海洋水质实时预测和实时数据处理技术有利于充分利用海洋资源,发展海洋经济,解决沿海水域海水污染和水质监管问题。论文运用深度学习的长短时记忆网络(Long Short Term Memory Networks,LSTM)算法对不同时间段内采集到的海洋水质数据进...海洋水质实时预测和实时数据处理技术有利于充分利用海洋资源,发展海洋经济,解决沿海水域海水污染和水质监管问题。论文运用深度学习的长短时记忆网络(Long Short Term Memory Networks,LSTM)算法对不同时间段内采集到的海洋水质数据进行分析建模,以实现对未来海水水质的预测。与传统的支持向量回归(Support Vector Regression,SVR)算法相比,LSTM取得了更好的拟合效果,拟合优度达到0.9554,平均绝对误差为0.0117,能很好地实现对海水水质的全天候预测,从而有效地监管海洋水质变化情况,提高海洋污染预警及海洋生态保护能力。展开更多
文摘海洋水质实时预测和实时数据处理技术有利于充分利用海洋资源,发展海洋经济,解决沿海水域海水污染和水质监管问题。论文运用深度学习的长短时记忆网络(Long Short Term Memory Networks,LSTM)算法对不同时间段内采集到的海洋水质数据进行分析建模,以实现对未来海水水质的预测。与传统的支持向量回归(Support Vector Regression,SVR)算法相比,LSTM取得了更好的拟合效果,拟合优度达到0.9554,平均绝对误差为0.0117,能很好地实现对海水水质的全天候预测,从而有效地监管海洋水质变化情况,提高海洋污染预警及海洋生态保护能力。