In this paper, we discuss the concept of fixed point curve for linear interpolations of weakly inward contractions and establish necessary condition for a nonex- pansive mapping to have approximate fixed point property.
This paper proposes a formally stronger set-valued Clarke's fixed point theorem. By this theorem we can improve a fixed point theorem for weakly inward contraction set-valued mapping of D. Dowing and W.A. Kirk.
More accurate Hausdorff dimension estimations of Julia sets for two simple functions are given by the methods of composition mapping and invariant set of contraction mapping. For quadratic function fc ( z ) = z^2 ...More accurate Hausdorff dimension estimations of Julia sets for two simple functions are given by the methods of composition mapping and invariant set of contraction mapping. For quadratic function fc ( z ) = z^2 + c(c ∈^C), the range of parameter c is expanded largely and a result on the Hausdorff dimension of its Julia set is gained. Similarly, a better result is obtained for cubic function fc(z) = z^3 + c(c ∈ ^C).展开更多
Using a fixed point theorem of Krasnosel'skii type, this article proves the exis- tence of asymptotically stable solutions for a Volterra-Hammerstein integral equation in two variables.
A new second-order nonlinear neutral delay differential equation r(t) x(t) + P(t)x(t-τ) + cr(t) x(t)-x(t-τ) + F t,x(t-σ1),x(t-σ2),...,x(t-σn) = G(t),t ≥ t0,where τ 0,σ1,σ2,...,σn ≥ ...A new second-order nonlinear neutral delay differential equation r(t) x(t) + P(t)x(t-τ) + cr(t) x(t)-x(t-τ) + F t,x(t-σ1),x(t-σ2),...,x(t-σn) = G(t),t ≥ t0,where τ 0,σ1,σ2,...,σn ≥ 0,P,r ∈ C([t0,+∞),R),F ∈ C([t0,+∞)×Rn,R),G ∈ C([t0,+∞),R) and c is a constant,is studied in this paper,and some sufficient conditions for existence of nonoscillatory solutions for this equation are established and expatiated through five theorems according to the range of value of function P(t).Two examples are presented to illustrate that our works are proper generalizations of the other corresponding results.Furthermore,our results omit the restriction of Q1(t) dominating Q2(t)(See condition C in the text).展开更多
For plane singly-connected domains with insulating boundary and four point-sized contacts, C<sub>0</sub> …C<sub>3</sub>, van der Pauw derived a famous equation relating the two trans-...For plane singly-connected domains with insulating boundary and four point-sized contacts, C<sub>0</sub> …C<sub>3</sub>, van der Pauw derived a famous equation relating the two trans-resistances R<sub>01,23</sub>, R<sub>12,30</sub> with the sheet resistance without any other parameters. If the domain has one hole van der Pauw’s equation becomes an inequality with upper and lower bounds, the envelopes. This was conjectured by Szymański et al. in 2013, and only recently it was proven by Miyoshi et al. with elaborate mathematical tools. The present article gives new proofs closer to physical intuition and partly with simpler mathematics. It relies heavily on conformal transformation and it expresses for the first time the trans-resistances and the lower envelope in terms of Jacobi functions, elliptic integrals, and the modular lambda elliptic function. New simple formulae for the asymptotic limit of a very large hole are also given.展开更多
This paper consists of some properties of a new subclass of semigroup of linear operator. The stability and spectra analysis of ω-order preserving partial contraction mapping (ω-OCPn) are obtained. The results show ...This paper consists of some properties of a new subclass of semigroup of linear operator. The stability and spectra analysis of ω-order preserving partial contraction mapping (ω-OCPn) are obtained. The results show that operators on the proposed ω-OCPn are densely defined and closed. Several existing results in the literature are contained in this work.展开更多
In recent papers the solution of nonlinear Fredholm integral equations was discussed using Adomian decomposition method (ADM). For case in which the integrals are analytically impossible, ADM can not be applied. In th...In recent papers the solution of nonlinear Fredholm integral equations was discussed using Adomian decomposition method (ADM). For case in which the integrals are analytically impossible, ADM can not be applied. In this paper a discretized version of the ADM is introduced and the proposed version will be called discrete Adomian decomposition method (DADM). An accelerated formula of Adomian polynomials is used in calculations. Based on this formula, a new convergence approach of ADM is introduced. Convergence approach is reliable enough to obtain an explicit formula for the maximum absolute truncated error of the Adomian’s series solution. Also, we prove that the solution of nonlinear Fredholm integral equation by DADM converges to ADM solution. Finally, some numerical examples were introduced.展开更多
This paper considers a dynamical system defined by a set of ordinary autonomous differential equations with discontinuous right-hand side. Such systems typically appear in economic modelling where there are two or mor...This paper considers a dynamical system defined by a set of ordinary autonomous differential equations with discontinuous right-hand side. Such systems typically appear in economic modelling where there are two or more regimes with a switching between them. Switching between regimes may be a consequence of market forces or deliberately forced in form of policy implementation. Stiefenhofer and Giesl [1] introduce such a model. The purpose of this paper is to show that a metric function defined between two adjacent trajectories contracts in forward time leading to exponentially asymptotically stability of (non)smooth periodic orbits. Hence, we define a local contraction function and distribute it over the smooth and nonsmooth parts of the periodic orbits. The paper shows exponentially asymptotical stability of a periodic orbit using a contraction property of the distance function between two adjacent nonsmooth trajectories over the entire periodic orbit. Moreover it is shown that the ω-limit set of the (non)smooth periodic orbit for two adjacent initial conditions is the same.展开更多
We show that an (eventually) strongly increasing and positively homogeneous mapping T defined on a Banach space can be turned into an Edelstein contraction with respect to Hilbert's projective metric. By applying t...We show that an (eventually) strongly increasing and positively homogeneous mapping T defined on a Banach space can be turned into an Edelstein contraction with respect to Hilbert's projective metric. By applying the Edelstein contraction theorem, a nonlinear version of the famous Krein- Rutman theorem is presented, and a simple iteration process {T^kx/||T^kx||} ( x ∈ P^+) is given for finding a positive eigenvector with positive eigenvalue of T. In particular, the eigenvalue problem of a nonnegative tensor A can be viewed as the fixed point problem of the Edelstein contraction with respect to Hilbert's projective metric. As a result, the nonlinear Perron-Frobenius property of a nonnegative tensor A is reached easily.展开更多
本文采用保角变换法 ,给出了计及重力影响的平板闸下泄流时水流竖向收缩系数ε的计算方法 ,给出了不同闸孔开度 ab 和不同相对水头 Ha 时的具体计算结果 ,研究表明 Ha 值对ε有一定的影响。文中还给出了在常用几何参数 (压板坡度、收缩...本文采用保角变换法 ,给出了计及重力影响的平板闸下泄流时水流竖向收缩系数ε的计算方法 ,给出了不同闸孔开度 ab 和不同相对水头 Ha 时的具体计算结果 ,研究表明 Ha 值对ε有一定的影响。文中还给出了在常用几何参数 (压板坡度、收缩比、相对水头 )范围内带有压板出口的水流竖向收缩系数。展开更多
In this article,we propose a new algorithm and prove that the sequence generalized by the algorithm converges strongly to a common element of the set of fixed points for a quasi-pseudo-contractive mapping and a demi-c...In this article,we propose a new algorithm and prove that the sequence generalized by the algorithm converges strongly to a common element of the set of fixed points for a quasi-pseudo-contractive mapping and a demi-contraction mapping and the set of zeros of monotone inclusion problems on Hadamard manifolds.As applications,we use our results to study the minimization problems and equilibrium problems in Hadamard manifolds.展开更多
Let C be a nonempty bounded closed convex subset of a Banach space X, and T : C → C be uniformly L-Lipschitzian with L ≥ 1 and asymptotically pseudocontractive with a sequence {kn}(?)[1, ∞), limn→∞ kn = 1. Fix u ...Let C be a nonempty bounded closed convex subset of a Banach space X, and T : C → C be uniformly L-Lipschitzian with L ≥ 1 and asymptotically pseudocontractive with a sequence {kn}(?)[1, ∞), limn→∞ kn = 1. Fix u ∈ C. For each n ≥ 1, xn is a unique fixed point of the contraction Sn(x) = (1 - (tn)/(Lkn))u + (tn)/(Lkn)Tnx(?)x ∈ C, where {tn}(?)[0,1). Under suitable conditions, the strong convergence of the sequence{xn}to a fixed point of T is characterized.展开更多
文摘In this paper, we discuss the concept of fixed point curve for linear interpolations of weakly inward contractions and establish necessary condition for a nonex- pansive mapping to have approximate fixed point property.
文摘This paper proposes a formally stronger set-valued Clarke's fixed point theorem. By this theorem we can improve a fixed point theorem for weakly inward contraction set-valued mapping of D. Dowing and W.A. Kirk.
文摘More accurate Hausdorff dimension estimations of Julia sets for two simple functions are given by the methods of composition mapping and invariant set of contraction mapping. For quadratic function fc ( z ) = z^2 + c(c ∈^C), the range of parameter c is expanded largely and a result on the Hausdorff dimension of its Julia set is gained. Similarly, a better result is obtained for cubic function fc(z) = z^3 + c(c ∈ ^C).
基金the support given by Vietnam’s National Foundation for Science and Technology Development (NAFOSTED) under Project 101.01-2012.12
文摘Using a fixed point theorem of Krasnosel'skii type, this article proves the exis- tence of asymptotically stable solutions for a Volterra-Hammerstein integral equation in two variables.
文摘A new second-order nonlinear neutral delay differential equation r(t) x(t) + P(t)x(t-τ) + cr(t) x(t)-x(t-τ) + F t,x(t-σ1),x(t-σ2),...,x(t-σn) = G(t),t ≥ t0,where τ 0,σ1,σ2,...,σn ≥ 0,P,r ∈ C([t0,+∞),R),F ∈ C([t0,+∞)×Rn,R),G ∈ C([t0,+∞),R) and c is a constant,is studied in this paper,and some sufficient conditions for existence of nonoscillatory solutions for this equation are established and expatiated through five theorems according to the range of value of function P(t).Two examples are presented to illustrate that our works are proper generalizations of the other corresponding results.Furthermore,our results omit the restriction of Q1(t) dominating Q2(t)(See condition C in the text).
文摘For plane singly-connected domains with insulating boundary and four point-sized contacts, C<sub>0</sub> …C<sub>3</sub>, van der Pauw derived a famous equation relating the two trans-resistances R<sub>01,23</sub>, R<sub>12,30</sub> with the sheet resistance without any other parameters. If the domain has one hole van der Pauw’s equation becomes an inequality with upper and lower bounds, the envelopes. This was conjectured by Szymański et al. in 2013, and only recently it was proven by Miyoshi et al. with elaborate mathematical tools. The present article gives new proofs closer to physical intuition and partly with simpler mathematics. It relies heavily on conformal transformation and it expresses for the first time the trans-resistances and the lower envelope in terms of Jacobi functions, elliptic integrals, and the modular lambda elliptic function. New simple formulae for the asymptotic limit of a very large hole are also given.
文摘This paper consists of some properties of a new subclass of semigroup of linear operator. The stability and spectra analysis of ω-order preserving partial contraction mapping (ω-OCPn) are obtained. The results show that operators on the proposed ω-OCPn are densely defined and closed. Several existing results in the literature are contained in this work.
文摘In recent papers the solution of nonlinear Fredholm integral equations was discussed using Adomian decomposition method (ADM). For case in which the integrals are analytically impossible, ADM can not be applied. In this paper a discretized version of the ADM is introduced and the proposed version will be called discrete Adomian decomposition method (DADM). An accelerated formula of Adomian polynomials is used in calculations. Based on this formula, a new convergence approach of ADM is introduced. Convergence approach is reliable enough to obtain an explicit formula for the maximum absolute truncated error of the Adomian’s series solution. Also, we prove that the solution of nonlinear Fredholm integral equation by DADM converges to ADM solution. Finally, some numerical examples were introduced.
文摘This paper considers a dynamical system defined by a set of ordinary autonomous differential equations with discontinuous right-hand side. Such systems typically appear in economic modelling where there are two or more regimes with a switching between them. Switching between regimes may be a consequence of market forces or deliberately forced in form of policy implementation. Stiefenhofer and Giesl [1] introduce such a model. The purpose of this paper is to show that a metric function defined between two adjacent trajectories contracts in forward time leading to exponentially asymptotically stability of (non)smooth periodic orbits. Hence, we define a local contraction function and distribute it over the smooth and nonsmooth parts of the periodic orbits. The paper shows exponentially asymptotical stability of a periodic orbit using a contraction property of the distance function between two adjacent nonsmooth trajectories over the entire periodic orbit. Moreover it is shown that the ω-limit set of the (non)smooth periodic orbit for two adjacent initial conditions is the same.
基金Acknowledgements The authors would like to thank the anonymous referees for their useful comments and valuable suggestions. This work was supported by the Hong Kong Research Grant Council (Grant Nos. PolyU 501808, 501909, 502510, 502111) and the first author was supported partly by the National Natural Science Foundation of China (Grant Nos. 11071279, 11171094, 11271112).
文摘We show that an (eventually) strongly increasing and positively homogeneous mapping T defined on a Banach space can be turned into an Edelstein contraction with respect to Hilbert's projective metric. By applying the Edelstein contraction theorem, a nonlinear version of the famous Krein- Rutman theorem is presented, and a simple iteration process {T^kx/||T^kx||} ( x ∈ P^+) is given for finding a positive eigenvector with positive eigenvalue of T. In particular, the eigenvalue problem of a nonnegative tensor A can be viewed as the fixed point problem of the Edelstein contraction with respect to Hilbert's projective metric. As a result, the nonlinear Perron-Frobenius property of a nonnegative tensor A is reached easily.
基金This study was supported by the Natural Science Foundation of China Medical University,TaiwanThis work was also supported by Scientific Research Fund of SiChuan Provincial Education Department(14ZA0272).
文摘In this article,we propose a new algorithm and prove that the sequence generalized by the algorithm converges strongly to a common element of the set of fixed points for a quasi-pseudo-contractive mapping and a demi-contraction mapping and the set of zeros of monotone inclusion problems on Hadamard manifolds.As applications,we use our results to study the minimization problems and equilibrium problems in Hadamard manifolds.
基金The Teaching and Research Award Fund for Outstanding Young Teachers in Higher Education Institutions of MOE, China, and The Dawn Program Fund in Shanghai.
文摘Let C be a nonempty bounded closed convex subset of a Banach space X, and T : C → C be uniformly L-Lipschitzian with L ≥ 1 and asymptotically pseudocontractive with a sequence {kn}(?)[1, ∞), limn→∞ kn = 1. Fix u ∈ C. For each n ≥ 1, xn is a unique fixed point of the contraction Sn(x) = (1 - (tn)/(Lkn))u + (tn)/(Lkn)Tnx(?)x ∈ C, where {tn}(?)[0,1). Under suitable conditions, the strong convergence of the sequence{xn}to a fixed point of T is characterized.