Background:The assessment of change in forest ecosystems,especially the change of canopy heights,is essential for improving global carbon estimates and understanding effects of climate change.Spaceborne lidar systems ...Background:The assessment of change in forest ecosystems,especially the change of canopy heights,is essential for improving global carbon estimates and understanding effects of climate change.Spaceborne lidar systems provide a unique opportunity to monitor changes in the vertical structure of forests.NASA’s Ice,Cloud and Land Elevation Satellites,ICESat-1 for the period 2003 to 2009,and ICESat-2(available since 2018),have collected elevation data over the Earth’s surface with a time interval of 10 years.In this study,we tried to discover forest canopy changes by utilizing the global forest canopy height map of 2005(complete global coverage with 1 km resolution)derived from ICESat-1 data and the ATL08 land and vegetation products of 2019(sampling footprints with 17 m diameter)from ICESat-2.Results:Our study revealed a significant increase in forest canopy heights of China’s Beijing-Tianjin-Hebei region.Evaluations of unchanging areas for data consistency of two products show that the bias values decreased significantly from line-transect-level(−8.0 to 6.2 m)to site-level(^(−1).5 to 1.1 m),while RMSE values are still relatively high(6.1 to 15.2 m,10.2 to 12.0 m).Additionally,58%of ATL08 data are located in‘0m’pixels with an average height of 7.9 m,which are likely to reflect the ambitious tree planting programs in China.Conclusions:Our study shows that it is possible,with proper calibrations,to use ICESat-1 and-2 products to detect forest canopy height changes in a regional context.We expect that the approach presented in this study is potentially suitable to derive a fine-scale map of global forest change.展开更多
A new methodology of comparing digital raster maps was proposed which allows not only detecting changes in the maps, but also obtaining quantitative measures of the importance of selected differences. Procedure of obj...A new methodology of comparing digital raster maps was proposed which allows not only detecting changes in the maps, but also obtaining quantitative measures of the importance of selected differences. Procedure of object interpretation of satellite images and forming of OMT (Object Map of Territory) is described. A list of allowable differences between two OMTs is defined. Two steps technique of quantitative measuring is proposed. At the first stage functions are constructed for calculating local measures of differences in the amount, areas and locations of objects on the map, as well as relations between the objects. In the second stage local measures are used to calculate the integral measure in order to get generalized assessment of difference between maps. The methods for constructing functions which calculate local and integral measures of differences are described. Examples of comparing and measuring the differences between OMTs are provided. Obtained results by utilizing this technique can be used to analyze trends, forecast of development and might be helpful for choosing most efficient scenarios for sustainable spatial planning and land management.展开更多
基金National Natural Science Foundation of China:41971289.
文摘Background:The assessment of change in forest ecosystems,especially the change of canopy heights,is essential for improving global carbon estimates and understanding effects of climate change.Spaceborne lidar systems provide a unique opportunity to monitor changes in the vertical structure of forests.NASA’s Ice,Cloud and Land Elevation Satellites,ICESat-1 for the period 2003 to 2009,and ICESat-2(available since 2018),have collected elevation data over the Earth’s surface with a time interval of 10 years.In this study,we tried to discover forest canopy changes by utilizing the global forest canopy height map of 2005(complete global coverage with 1 km resolution)derived from ICESat-1 data and the ATL08 land and vegetation products of 2019(sampling footprints with 17 m diameter)from ICESat-2.Results:Our study revealed a significant increase in forest canopy heights of China’s Beijing-Tianjin-Hebei region.Evaluations of unchanging areas for data consistency of two products show that the bias values decreased significantly from line-transect-level(−8.0 to 6.2 m)to site-level(^(−1).5 to 1.1 m),while RMSE values are still relatively high(6.1 to 15.2 m,10.2 to 12.0 m).Additionally,58%of ATL08 data are located in‘0m’pixels with an average height of 7.9 m,which are likely to reflect the ambitious tree planting programs in China.Conclusions:Our study shows that it is possible,with proper calibrations,to use ICESat-1 and-2 products to detect forest canopy height changes in a regional context.We expect that the approach presented in this study is potentially suitable to derive a fine-scale map of global forest change.
文摘A new methodology of comparing digital raster maps was proposed which allows not only detecting changes in the maps, but also obtaining quantitative measures of the importance of selected differences. Procedure of object interpretation of satellite images and forming of OMT (Object Map of Territory) is described. A list of allowable differences between two OMTs is defined. Two steps technique of quantitative measuring is proposed. At the first stage functions are constructed for calculating local measures of differences in the amount, areas and locations of objects on the map, as well as relations between the objects. In the second stage local measures are used to calculate the integral measure in order to get generalized assessment of difference between maps. The methods for constructing functions which calculate local and integral measures of differences are described. Examples of comparing and measuring the differences between OMTs are provided. Obtained results by utilizing this technique can be used to analyze trends, forecast of development and might be helpful for choosing most efficient scenarios for sustainable spatial planning and land management.