Zero defection manufacturing (ZDM) is the pursuit of the manufacturing industry. However, there is a lack of the implementation method of ZDM in the multi-stage manufacturing process (MMP). Implementing ZDM and contro...Zero defection manufacturing (ZDM) is the pursuit of the manufacturing industry. However, there is a lack of the implementation method of ZDM in the multi-stage manufacturing process (MMP). Implementing ZDM and controlling product quality in MMP remains an urgent problem in intelligent manufacturing. A novel predict-prevention quality control method in MMP towards ZDM is proposed, including quality characteristics monitoring, key quality characteristics prediction, and assembly quality optimization. The stability of the quality characteristics is detected by analyzing the distribution of quality characteristics. By considering the correlations between different quality characteristics, a deep supervised long-short term memory (SLSTM) prediction network is built for time series prediction of quality characteristics. A long-short term memory-genetic algorithm (LSTM-GA) network is proposed to optimize the assembly quality. By utilizing the proposed quality control method in MMP, unqualified products can be avoided, and ZDM of MMP is implemented. Extensive empirical evaluations on the MMP of compressors validate the applicability and practicability of the proposed method.展开更多
The quality of a product is dependent on both facilities/equipment and manufacturing processes. Any error or disorder in facilities and processes can cause a catastrophic failure. To avoid such failures, a zero- defec...The quality of a product is dependent on both facilities/equipment and manufacturing processes. Any error or disorder in facilities and processes can cause a catastrophic failure. To avoid such failures, a zero- defect manufacturing (ZDM) system is necessary in order to increase the reliability and safety of manufacturing systems and reach zero-defect quality of products. One of the major challenges for ZDM is the analysis of massive raw datasets. This type of analysis needs an automated and self-orga- nized decision making system. Data mining (DM) is an effective methodology for discovering interesting knowl- edge within a huge datasets. It plays an important role in developing a ZDM system. The paper presents a general framework of ZDM and explains how to apply DM approaches to manufacture the products with zero-defect. This paper also discusses 3 ongoing projects demonstrating the practice of using DM approaches for reaching the goal of ZDM.展开更多
基金The research work presented in this paper is supported by the National Natural Science Foundation of China(Grant No.51675418).
文摘Zero defection manufacturing (ZDM) is the pursuit of the manufacturing industry. However, there is a lack of the implementation method of ZDM in the multi-stage manufacturing process (MMP). Implementing ZDM and controlling product quality in MMP remains an urgent problem in intelligent manufacturing. A novel predict-prevention quality control method in MMP towards ZDM is proposed, including quality characteristics monitoring, key quality characteristics prediction, and assembly quality optimization. The stability of the quality characteristics is detected by analyzing the distribution of quality characteristics. By considering the correlations between different quality characteristics, a deep supervised long-short term memory (SLSTM) prediction network is built for time series prediction of quality characteristics. A long-short term memory-genetic algorithm (LSTM-GA) network is proposed to optimize the assembly quality. By utilizing the proposed quality control method in MMP, unqualified products can be avoided, and ZDM of MMP is implemented. Extensive empirical evaluations on the MMP of compressors validate the applicability and practicability of the proposed method.
文摘The quality of a product is dependent on both facilities/equipment and manufacturing processes. Any error or disorder in facilities and processes can cause a catastrophic failure. To avoid such failures, a zero- defect manufacturing (ZDM) system is necessary in order to increase the reliability and safety of manufacturing systems and reach zero-defect quality of products. One of the major challenges for ZDM is the analysis of massive raw datasets. This type of analysis needs an automated and self-orga- nized decision making system. Data mining (DM) is an effective methodology for discovering interesting knowl- edge within a huge datasets. It plays an important role in developing a ZDM system. The paper presents a general framework of ZDM and explains how to apply DM approaches to manufacture the products with zero-defect. This paper also discusses 3 ongoing projects demonstrating the practice of using DM approaches for reaching the goal of ZDM.