Although a number of petrographic observations and isotopic data suggest that magma mixing is common in genesis of many granite plutons, it is still controversial whether the mantle-derived magmas were involved in gra...Although a number of petrographic observations and isotopic data suggest that magma mixing is common in genesis of many granite plutons, it is still controversial whether the mantle-derived magmas were involved in granites. We carried out in this study a systematic analysis of in situ zircon Hf-O isotopes for three early Yanshanian intrusions dated at ca. 160 Ma from the Nanling Range of Southeast China. The Qinghu monzonite has very homogeneous zircon Hf-O isotopic compositions, εHf(t) =11.6±0.3 and δ18O=5.4‰±0.3‰. In combination with whole-rock geochemical and Sr-Nd isotopic data, the parental magma of the Qinghu monzonite were likely derived from the partial melting of recently-metasomatized, phlogopite-bearing lithospheric mantle without appreciable crustal contamination. The Lisong and Fogang granites and the mafic microgranular enclaves (MME) within the Lisong granites have a wide range of zircon Hf-O isotopic compositions, with Hf and O isotopes being negatively correlated within each pluton. The Lisong MMEs were crystallized from a mantle-derived magma, similar to the parental magma of the Qinghu monzonite, with small amount of crustal assimilation. The Lisong and Fogang granites were formed by reworking of meta-sedimentary materials by mantle-derived magmas and mixing of the mantle-and sediment-derived melts to varying degrees. It is thus concluded that these two Yanshanian granites in the Nanling Range were formed associated with growth and differentiation of continental crust.展开更多
The late Paleozoic postcollisional granitoids, mafic-ultramafic complexes, and volcanic rocks are extensively distributed around the Junggar Basin; they are generally characterized by positive εNd(t) values, implying...The late Paleozoic postcollisional granitoids, mafic-ultramafic complexes, and volcanic rocks are extensively distributed around the Junggar Basin; they are generally characterized by positive εNd(t) values, implying that the magmas were mantle-derived and contaminated with crustal materials to some extents. The emplacement of mantle-derived magmas and their differentiates in the upper crust is the expression of deep geological processes at shallow level, while much more mantle-derived magmas were underplated in the lower crust and the region near the crust-mantle boundary, being component part of basement of the Junggar Basin. The postcollisional mafic-ultramafic complexes would not be generated by re-melting of residual oceanic crust, which was considered as the basement of the Junggar Basin, unless very high degrees of partial melting occurred. Even if old continental crust had been present before collision, it would have been strongly modified by the mantle-derived magma underplating. This interpretation is compatible with the existing geophysical data.展开更多
Crustal recycling at convergent plate boundaries is essential to mantle heterogeneity.However,crustal signatures in the mantle source of basaltic rocks above subduction zones were primarily incorporated in the form of...Crustal recycling at convergent plate boundaries is essential to mantle heterogeneity.However,crustal signatures in the mantle source of basaltic rocks above subduction zones were primarily incorporated in the form of liquid rather than solid phases.The physicochemical property of liquid phases is determined by the dehydration behavior of crustal rocks at the slab-mantle interface in subduction channels.Because of the significant fractionation in incompatible trace elements but the full inheritance in radiogenic isotopes relative to their crustal sources,the production of liquid phases is crucial to the geochemical transfer from the subducting crust into the mantle.In this process,the stability of specific minerals in subducting crustal rocks exerts a primary control on the enrichment of given trace elements in the liquid phases.For this reason,geochemically enriched oceanic basalts can be categorized into two types in terms of their trace element distribution patterns in the primitive mantle-normalized diagram.One is island arc basalts(IAB),showing enrichment in LILE,Pb and LREE but depletion in HFSE such as Nb and Ta relative to HREE,The other is ocean island basalts(OIB),exhibiting enrichment in LILE and LREE,enrichment or non-depletion in HFSE but depletion in Pb relative to HREE.In either types,these basalts show the enhanced enrichment of LILE and LREE with increasing their incompatibility relative to normal mid-ocean ridge basalts(MORB).The thermal regime of subduction zones can be categorized into two stages in both time and space,The first stage is characterized by compressional tectonism at low thermal gradients.As a consequence,metamorphic dehydration of the subducting crust prevails at forearc to subarc depths due to the breakdown of hydrous minerals such as mica and amphibole in the stability field of garnet and rutile,resulting in the liberation of aqueous solutions with the trace element composition that is considerably enriched in LILE,Pb and LREE but depleted in HFSE and HREE relative to normal M展开更多
The transport of water from subducting crust into the mantle is mainly dictated by the stability of hydrous minerals in subduction zones. The thermal structure of subduction zones is a key to dehydration of the subduc...The transport of water from subducting crust into the mantle is mainly dictated by the stability of hydrous minerals in subduction zones. The thermal structure of subduction zones is a key to dehydration of the subducting crust at different depths. Oceanic subduction zones show a large variation in the geotherm, but seismicity and arc volcanism are only prominent in cold subduction zones where geothermal gradients are low. In contrast, continental subduction zones have low geothermal gradients, resulting in metamorphism in cold subduction zones and the absence of arc volcanism during subduction. In very cold subduction zone where the geothermal gradient is very low(?5?C/km), lawsonite may carry water into great depths of ?300 km. In the hot subduction zone where the geothermal gradient is high(>25?C/km), the subducting crust dehydrates significantly at shallow depths and may partially melt at depths of <80 km to form felsic melts, into which water is highly dissolved. In this case, only a minor amount of water can be transported into great depths. A number of intermediate modes are present between these two end-member dehydration modes, making subduction-zone dehydration various. Low-T/low-P hydrous minerals are not stable in warm subduction zones with increasing subduction depths and thus break down at forearc depths of ?60–80 km to release large amounts of water. In contrast, the low-T/low-P hydrous minerals are replaced by low-T/high-P hydrous minerals in cold subduction zones with increasing subduction depths, allowing the water to be transported to subarc depths of 80–160 km. In either case, dehydration reactions not only trigger seismicity in the subducting crust but also cause hydration of the mantle wedge. Nevertheless, there are still minor amounts of water to be transported by ultrahigh-pressure hydrous minerals and nominally anhydrous minerals into the deeper mantle. The mantle wedge overlying the subducting slab does not partially melt upon water influx for volcanic arc magmatism, but it is hydrat展开更多
The late Permian Emeishan large igneous province (EL1P) covers -0.3× 10-6 kmL of the western margin of the Yangtze Block and Tibetan Plateau with displaced, correlative units in northern Vietnam (Song Da zone...The late Permian Emeishan large igneous province (EL1P) covers -0.3× 10-6 kmL of the western margin of the Yangtze Block and Tibetan Plateau with displaced, correlative units in northern Vietnam (Song Da zone). The ELIP is of particular interest because it contains numerous world-class base metal deposits and is contemporaneous with the late Capitanian (-260 Ma) mass extinction. The flood basalts are the signature feature of the ELIP but there are also ultramafic and silicic volcanic rocks and layered mafic- ultramafic and silicic plutonic rocks exposed. The EL1P is divided into three nearly concentric zones (i.e. inner, middle and outer) which correspond to progressively thicker crust from the inner to the outer zone. The eruptive age of the ELIP is constrained by geological, paleomagnetic and geochronological evidence to an interval of 〈3 Ma. The presence of picritic rocks and thick piles of flood basalts testifies to high temperature thermal regime however there is uncertainty as to whether these magmas were derived from the subcontinental lithospheric mantle or sub-lithospheric mantle (i.e. asthenosphere or mantle plume) sources or both. The range of Sr (Isr ≈ 0.7040-0.7132), Nd (ENd(t) ≈ -14 tO +8), Pb (206-pb/204-pb1 ≈ 17.9-20.6) and Os (Yos ≈ -5 to +11) isotope values of the ultramafic and mafic rocks does not permit a conclusive answer to ultimate source origin of the primitive rocks but it is clear that some rocks were affected by crustal contamination and the presence of near-depleted isotope compo- sitions suggests that there is a sub-lithospheric mantle component in the system. The silicic rocks are derived by basaltic magmas/rocks through fractional crystallization or partial melting, crustal melting or by interactions between mafic and crustal melts. The formation of the Fe-Ti-V oxide-ore deposits is probably due to a combination of fractional crystallization of Ti-rich basalt and fluxing of C02-rich fluids whereas the Ni-Cu-(PGE) deposits a展开更多
利用天然体系相平衡数据对于17种较为常用的地质温度计进行了检测评价。结果表明:(1)Bertrand and Mercier(1985)提出的二辉石温度计是目前为止最适合用于幔源包体的温度估计,其推导方法也有普遍意义。本文利用这一温度计,根据中国东部...利用天然体系相平衡数据对于17种较为常用的地质温度计进行了检测评价。结果表明:(1)Bertrand and Mercier(1985)提出的二辉石温度计是目前为止最适合用于幔源包体的温度估计,其推导方法也有普遍意义。本文利用这一温度计,根据中国东部,德国Westeifel,法国Massif Central以及蒙古Tarat等地的橄榄岩包体的矿物化学数据,推导了Ca单斜辉石经验温度计: T(℃)=1575+288.64×ln[1—Ca/(1—Na)]_(Cpx)(2)国内广泛使用的Mercier单辉石温度计常常会造成±100℃的估算误差,而Wood-Banno法,Wells法的使用只限于特定的区间。本文还推荐了几种单辉石温度计,这些相对独立的温度计的综合使用,在研究单一元素的化学平衡及反应动力学问题时具有重要意义。展开更多
It has been proposed that the North China Craton(NCC)was thinned up to a thickness of>100 km during the Phanerozoic,and underwent an associated craton destruction.Evidently,it is an important topic worthy of future...It has been proposed that the North China Craton(NCC)was thinned up to a thickness of>100 km during the Phanerozoic,and underwent an associated craton destruction.Evidently,it is an important topic worthy of future study to understanding the mechanism of cratonic destruction and its role played in the continental evolution.After synthesized the global cratons of India,Brazil,South Africa,Siberia,East Europe(Baltic)and North America,we found that lithospheric thinning is common in the cratonic evolution,but it is not always associated with craton destruction.Most cratons was thinned by thermal erosion of mantle plume or mantle upwelling,which,however,may not cause craton destruction.Based on the studies of the North American and North China Cratons,we suggest that oceanic subduction plays an important role in caton destruction.Fluids or melts released by dehydration of the subducted slabs metasomatize the mantle wedge above and trigger extensive partial melting.More importantly,the metasomatized mantle lost its original rigidity and make craton easier to be deformed and then to be destoyed.Therefore,we suggest that the widespread crust-derived granite and large-scale ductile deformation within the continental crust can be regarded as the petrological and structural indicators of craton destruction,respectively.展开更多
The Emeishan large igneous province(ELIP) in SW China is interpreted to be associated with an ancient mantle plume. Most of the constraints on the role of mantle plume in the generation of the Emeishan flood basalts w...The Emeishan large igneous province(ELIP) in SW China is interpreted to be associated with an ancient mantle plume. Most of the constraints on the role of mantle plume in the generation of the Emeishan flood basalts were provided by geological and geochemical methods, but the geophysical investigation is very limited. In order to better understand the deep structure and features of ELIP, we have studied the crustal velocity structure using the data acquired from the Lijiang-Panzhihua-Qingzhen wide-angle seismic profile. This profile crosses the three sub-zones of the ELIP(the inner, intermediate, and outer zones), divided based on the differential erosion and uplift of the Maokou limestone. The results provided by the active source seismic experiment demonstrate:(1) The average depth of the crystalline basement along the profile is about 2 km.(2) The middle crust in the Inner Zone is characterized by high-velocity anomalies, with the average velocity of 6.2-6.6 km/s, which is about 0.1– 0.2 km/s higher than the normal one. The velocity of the lower crust in the inner zone is 6.9-7.2 km/s, higher than those observed in the intermediate and outer zones(6.7-7.0 km/s). Relatively low velocity anomalies appear in the upper, middle and lower crusts near the junction of the inner zone and intermediate zone, probably due to the effect of the Xiaojiang fault(XJF).(3) The average velocity of the crust is comparatively low on both sides of XJF, especially on the east side, and the average velocity of the consolidated continental crust is also low there. This may suggest that the XJF extends at least down to 40 km deep, even beyond through the crust.(4) The depth to the Moho discontinuity decrease gradually from 47-53 km in the inner zone, via 42-50 km in the intermediate zone to 38-42 km in the outer zone. In the inner zone, the Moho uplifts locally and the(consolidated) crust is characterized by high-velocity anomalies, which are likely related to intensive magma intrusion and underplating associated with melting of plum展开更多
The whole rock K-Ar ages of basalts from the South China Sea basin vary from 3.8 to 7.9 Ma, which suggest that intra-plate volcanism after the cessation of spreading of the South China Sea (SCS) is comparable to that ...The whole rock K-Ar ages of basalts from the South China Sea basin vary from 3.8 to 7.9 Ma, which suggest that intra-plate volcanism after the cessation of spreading of the South China Sea (SCS) is comparable to that in adjacent regions around the SCS, i.e., Leiqiong Peninsula, northern margin of the SCS, Indochina block, and so on. Based on detailed petrographic studies, we selected many fresh ba-saltic rocks and measured their major element, trace element, and Sr-Nd-Pb isotope compositions. Geochemical characteristics of major element and trace element show that these basaltic rocks belong to alkali basalt magma series, and are similar to OIB-type basalt. The extent of partial melting of mantle rock in source region is very low, and magma may experience crystallization differentiation and cu-mulation during the ascent to or storing in the high-level magma chamber. Sr-Nd-Pb isotopic data of these basaltic rocks imply an inhomogeneous mantle below the South China Sea. The nature of magma origin has a two end-member mixing model, one is EM2 (Enriched Mantle 2) which may be originated from mantle plume, the other is DMM (Depleted MORB Mantle). Pb isotopic characteristics show the Dupal anomaly in the South China Sea, and combined with newly found Dupal anomaly at Gakkel ridge in Arctic Ocean, this implies that Dupal anomaly is not only limited to South Hemisphere. In variation diagrams among Sr, Nd and Pb, the origin nature of mantle below the SCS is similar to those below Leiqiong peninsula, northern margin of the SCS and Indochina peninsula, and is different from those below north and northeast China. This study provides geochemical constraints on Hainan mantle plume.展开更多
基金Supported by National Basic Research Program of China (Grant No. 2007CB411403)Knowledge Innovation Project of the Chinese Academy of Sci-ences (Grant No. KZCX1-YW-15-2)National Natural Science Foundation of China (Grant No. 40728002)
文摘Although a number of petrographic observations and isotopic data suggest that magma mixing is common in genesis of many granite plutons, it is still controversial whether the mantle-derived magmas were involved in granites. We carried out in this study a systematic analysis of in situ zircon Hf-O isotopes for three early Yanshanian intrusions dated at ca. 160 Ma from the Nanling Range of Southeast China. The Qinghu monzonite has very homogeneous zircon Hf-O isotopic compositions, εHf(t) =11.6±0.3 and δ18O=5.4‰±0.3‰. In combination with whole-rock geochemical and Sr-Nd isotopic data, the parental magma of the Qinghu monzonite were likely derived from the partial melting of recently-metasomatized, phlogopite-bearing lithospheric mantle without appreciable crustal contamination. The Lisong and Fogang granites and the mafic microgranular enclaves (MME) within the Lisong granites have a wide range of zircon Hf-O isotopic compositions, with Hf and O isotopes being negatively correlated within each pluton. The Lisong MMEs were crystallized from a mantle-derived magma, similar to the parental magma of the Qinghu monzonite, with small amount of crustal assimilation. The Lisong and Fogang granites were formed by reworking of meta-sedimentary materials by mantle-derived magmas and mixing of the mantle-and sediment-derived melts to varying degrees. It is thus concluded that these two Yanshanian granites in the Nanling Range were formed associated with growth and differentiation of continental crust.
基金Project supported by the National Natural Science Foundation of China (Grants Nos. 4900031 and 49272103).
文摘The late Paleozoic postcollisional granitoids, mafic-ultramafic complexes, and volcanic rocks are extensively distributed around the Junggar Basin; they are generally characterized by positive εNd(t) values, implying that the magmas were mantle-derived and contaminated with crustal materials to some extents. The emplacement of mantle-derived magmas and their differentiates in the upper crust is the expression of deep geological processes at shallow level, while much more mantle-derived magmas were underplated in the lower crust and the region near the crust-mantle boundary, being component part of basement of the Junggar Basin. The postcollisional mafic-ultramafic complexes would not be generated by re-melting of residual oceanic crust, which was considered as the basement of the Junggar Basin, unless very high degrees of partial melting occurred. Even if old continental crust had been present before collision, it would have been strongly modified by the mantle-derived magma underplating. This interpretation is compatible with the existing geophysical data.
基金supported by funds from the Chinese Academy of Sciences(XDB18020303)the Chinese Ministry of Science and Technology(2015CB856100)the National Natural ScienceFoundation of China(41590620)
文摘Crustal recycling at convergent plate boundaries is essential to mantle heterogeneity.However,crustal signatures in the mantle source of basaltic rocks above subduction zones were primarily incorporated in the form of liquid rather than solid phases.The physicochemical property of liquid phases is determined by the dehydration behavior of crustal rocks at the slab-mantle interface in subduction channels.Because of the significant fractionation in incompatible trace elements but the full inheritance in radiogenic isotopes relative to their crustal sources,the production of liquid phases is crucial to the geochemical transfer from the subducting crust into the mantle.In this process,the stability of specific minerals in subducting crustal rocks exerts a primary control on the enrichment of given trace elements in the liquid phases.For this reason,geochemically enriched oceanic basalts can be categorized into two types in terms of their trace element distribution patterns in the primitive mantle-normalized diagram.One is island arc basalts(IAB),showing enrichment in LILE,Pb and LREE but depletion in HFSE such as Nb and Ta relative to HREE,The other is ocean island basalts(OIB),exhibiting enrichment in LILE and LREE,enrichment or non-depletion in HFSE but depletion in Pb relative to HREE.In either types,these basalts show the enhanced enrichment of LILE and LREE with increasing their incompatibility relative to normal mid-ocean ridge basalts(MORB).The thermal regime of subduction zones can be categorized into two stages in both time and space,The first stage is characterized by compressional tectonism at low thermal gradients.As a consequence,metamorphic dehydration of the subducting crust prevails at forearc to subarc depths due to the breakdown of hydrous minerals such as mica and amphibole in the stability field of garnet and rutile,resulting in the liberation of aqueous solutions with the trace element composition that is considerably enriched in LILE,Pb and LREE but depleted in HFSE and HREE relative to normal M
基金supported by funds from the National Natural Science Foundation of China(Grant No.41590620)the Chinese Ministry of Science and Technology(Grant No.2015CB856100)
文摘The transport of water from subducting crust into the mantle is mainly dictated by the stability of hydrous minerals in subduction zones. The thermal structure of subduction zones is a key to dehydration of the subducting crust at different depths. Oceanic subduction zones show a large variation in the geotherm, but seismicity and arc volcanism are only prominent in cold subduction zones where geothermal gradients are low. In contrast, continental subduction zones have low geothermal gradients, resulting in metamorphism in cold subduction zones and the absence of arc volcanism during subduction. In very cold subduction zone where the geothermal gradient is very low(?5?C/km), lawsonite may carry water into great depths of ?300 km. In the hot subduction zone where the geothermal gradient is high(>25?C/km), the subducting crust dehydrates significantly at shallow depths and may partially melt at depths of <80 km to form felsic melts, into which water is highly dissolved. In this case, only a minor amount of water can be transported into great depths. A number of intermediate modes are present between these two end-member dehydration modes, making subduction-zone dehydration various. Low-T/low-P hydrous minerals are not stable in warm subduction zones with increasing subduction depths and thus break down at forearc depths of ?60–80 km to release large amounts of water. In contrast, the low-T/low-P hydrous minerals are replaced by low-T/high-P hydrous minerals in cold subduction zones with increasing subduction depths, allowing the water to be transported to subarc depths of 80–160 km. In either case, dehydration reactions not only trigger seismicity in the subducting crust but also cause hydration of the mantle wedge. Nevertheless, there are still minor amounts of water to be transported by ultrahigh-pressure hydrous minerals and nominally anhydrous minerals into the deeper mantle. The mantle wedge overlying the subducting slab does not partially melt upon water influx for volcanic arc magmatism, but it is hydrat
基金supported by NSC grant 102-2628-M-003-001-MY4 to JGS
文摘The late Permian Emeishan large igneous province (EL1P) covers -0.3× 10-6 kmL of the western margin of the Yangtze Block and Tibetan Plateau with displaced, correlative units in northern Vietnam (Song Da zone). The ELIP is of particular interest because it contains numerous world-class base metal deposits and is contemporaneous with the late Capitanian (-260 Ma) mass extinction. The flood basalts are the signature feature of the ELIP but there are also ultramafic and silicic volcanic rocks and layered mafic- ultramafic and silicic plutonic rocks exposed. The EL1P is divided into three nearly concentric zones (i.e. inner, middle and outer) which correspond to progressively thicker crust from the inner to the outer zone. The eruptive age of the ELIP is constrained by geological, paleomagnetic and geochronological evidence to an interval of 〈3 Ma. The presence of picritic rocks and thick piles of flood basalts testifies to high temperature thermal regime however there is uncertainty as to whether these magmas were derived from the subcontinental lithospheric mantle or sub-lithospheric mantle (i.e. asthenosphere or mantle plume) sources or both. The range of Sr (Isr ≈ 0.7040-0.7132), Nd (ENd(t) ≈ -14 tO +8), Pb (206-pb/204-pb1 ≈ 17.9-20.6) and Os (Yos ≈ -5 to +11) isotope values of the ultramafic and mafic rocks does not permit a conclusive answer to ultimate source origin of the primitive rocks but it is clear that some rocks were affected by crustal contamination and the presence of near-depleted isotope compo- sitions suggests that there is a sub-lithospheric mantle component in the system. The silicic rocks are derived by basaltic magmas/rocks through fractional crystallization or partial melting, crustal melting or by interactions between mafic and crustal melts. The formation of the Fe-Ti-V oxide-ore deposits is probably due to a combination of fractional crystallization of Ti-rich basalt and fluxing of C02-rich fluids whereas the Ni-Cu-(PGE) deposits a
文摘利用天然体系相平衡数据对于17种较为常用的地质温度计进行了检测评价。结果表明:(1)Bertrand and Mercier(1985)提出的二辉石温度计是目前为止最适合用于幔源包体的温度估计,其推导方法也有普遍意义。本文利用这一温度计,根据中国东部,德国Westeifel,法国Massif Central以及蒙古Tarat等地的橄榄岩包体的矿物化学数据,推导了Ca单斜辉石经验温度计: T(℃)=1575+288.64×ln[1—Ca/(1—Na)]_(Cpx)(2)国内广泛使用的Mercier单辉石温度计常常会造成±100℃的估算误差,而Wood-Banno法,Wells法的使用只限于特定的区间。本文还推荐了几种单辉石温度计,这些相对独立的温度计的综合使用,在研究单一元素的化学平衡及反应动力学问题时具有重要意义。
文摘近些年,我们在西藏罗布莎蛇绿岩型铬铁矿中发现金刚石和柯石英等超高压矿物和异常地幔矿物,成果多次在美国 AGU 会议上做特邀报告,发表在2007年《Geology》和国内期刊上,并有4个新矿物获得国际新矿物委员会批准。这些成果在国内外引起广泛关注,也引发出一系列新的科学问题,例如,金刚石的赋存状态,物质来源和成因?与其伴随的铬铁矿的成因,与金刚石的关系?两者形成的地质背景、物理化学环境、保存和运移的规律、机制,等等。为了探讨这些问题,我们认为除了研究罗布莎铬铁矿之外,还应该开展铬铁矿的围岩地幔橄榄岩的研究,看看它们中都有什么矿物,与铬铁矿中的矿物究竟存在什么异同以及两者之间的成因联系?为此,我们从西藏罗布莎铬铁矿31号矿体不同高度取回两个各自为1吨重的方辉橄榄岩围岩样品,开展人工重砂矿物的分选。通过矿物成分、激光拉曼和 X 射线衍射光谱的研究,从中识别出金刚石等50余种矿物。经初步对比,认为铬铁矿围岩方辉橄榄岩中发现的矿物组合与铬铁矿中相似,表明两者存在成因上的联系,并可能共同经历了从深部到浅部的地质过程。
基金supported by National Natural Science Foundation of China(Grant Nos.41130313 and 91014007)
文摘It has been proposed that the North China Craton(NCC)was thinned up to a thickness of>100 km during the Phanerozoic,and underwent an associated craton destruction.Evidently,it is an important topic worthy of future study to understanding the mechanism of cratonic destruction and its role played in the continental evolution.After synthesized the global cratons of India,Brazil,South Africa,Siberia,East Europe(Baltic)and North America,we found that lithospheric thinning is common in the cratonic evolution,but it is not always associated with craton destruction.Most cratons was thinned by thermal erosion of mantle plume or mantle upwelling,which,however,may not cause craton destruction.Based on the studies of the North American and North China Cratons,we suggest that oceanic subduction plays an important role in caton destruction.Fluids or melts released by dehydration of the subducted slabs metasomatize the mantle wedge above and trigger extensive partial melting.More importantly,the metasomatized mantle lost its original rigidity and make craton easier to be deformed and then to be destoyed.Therefore,we suggest that the widespread crust-derived granite and large-scale ductile deformation within the continental crust can be regarded as the petrological and structural indicators of craton destruction,respectively.
基金supported by the National Basic Research Program of China(Grant No.2011CB808904)the National Natural Science Foundation of China(Grants Nos.41274070,41474068)
文摘The Emeishan large igneous province(ELIP) in SW China is interpreted to be associated with an ancient mantle plume. Most of the constraints on the role of mantle plume in the generation of the Emeishan flood basalts were provided by geological and geochemical methods, but the geophysical investigation is very limited. In order to better understand the deep structure and features of ELIP, we have studied the crustal velocity structure using the data acquired from the Lijiang-Panzhihua-Qingzhen wide-angle seismic profile. This profile crosses the three sub-zones of the ELIP(the inner, intermediate, and outer zones), divided based on the differential erosion and uplift of the Maokou limestone. The results provided by the active source seismic experiment demonstrate:(1) The average depth of the crystalline basement along the profile is about 2 km.(2) The middle crust in the Inner Zone is characterized by high-velocity anomalies, with the average velocity of 6.2-6.6 km/s, which is about 0.1– 0.2 km/s higher than the normal one. The velocity of the lower crust in the inner zone is 6.9-7.2 km/s, higher than those observed in the intermediate and outer zones(6.7-7.0 km/s). Relatively low velocity anomalies appear in the upper, middle and lower crusts near the junction of the inner zone and intermediate zone, probably due to the effect of the Xiaojiang fault(XJF).(3) The average velocity of the crust is comparatively low on both sides of XJF, especially on the east side, and the average velocity of the consolidated continental crust is also low there. This may suggest that the XJF extends at least down to 40 km deep, even beyond through the crust.(4) The depth to the Moho discontinuity decrease gradually from 47-53 km in the inner zone, via 42-50 km in the intermediate zone to 38-42 km in the outer zone. In the inner zone, the Moho uplifts locally and the(consolidated) crust is characterized by high-velocity anomalies, which are likely related to intensive magma intrusion and underplating associated with melting of plum
基金Special Plan Project of Science and Technology Generalship in Qing-dao (Grant No.05-2-JC-79)Special Project of Technical Foundational Work and Social Public Welfare Research (Grant No. 2003DIB3J114)
文摘The whole rock K-Ar ages of basalts from the South China Sea basin vary from 3.8 to 7.9 Ma, which suggest that intra-plate volcanism after the cessation of spreading of the South China Sea (SCS) is comparable to that in adjacent regions around the SCS, i.e., Leiqiong Peninsula, northern margin of the SCS, Indochina block, and so on. Based on detailed petrographic studies, we selected many fresh ba-saltic rocks and measured their major element, trace element, and Sr-Nd-Pb isotope compositions. Geochemical characteristics of major element and trace element show that these basaltic rocks belong to alkali basalt magma series, and are similar to OIB-type basalt. The extent of partial melting of mantle rock in source region is very low, and magma may experience crystallization differentiation and cu-mulation during the ascent to or storing in the high-level magma chamber. Sr-Nd-Pb isotopic data of these basaltic rocks imply an inhomogeneous mantle below the South China Sea. The nature of magma origin has a two end-member mixing model, one is EM2 (Enriched Mantle 2) which may be originated from mantle plume, the other is DMM (Depleted MORB Mantle). Pb isotopic characteristics show the Dupal anomaly in the South China Sea, and combined with newly found Dupal anomaly at Gakkel ridge in Arctic Ocean, this implies that Dupal anomaly is not only limited to South Hemisphere. In variation diagrams among Sr, Nd and Pb, the origin nature of mantle below the SCS is similar to those below Leiqiong peninsula, northern margin of the SCS and Indochina peninsula, and is different from those below north and northeast China. This study provides geochemical constraints on Hainan mantle plume.