期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
杂波环境下机动输入序列和量测序列的联合最优估计
被引量:
1
1
作者
朱洪艳
韩崇昭
+2 位作者
韩红
左东广
郑林
《西安交通大学学报》
EI
CAS
CSCD
北大核心
2003年第2期175-178,214,共5页
为了提高在杂波环境下跟踪强机动目标的精度,提出了一种新的基于期望极大化(EM)算法的机动目标状态估计方法.首先建立了基于EM算法的最大后验概率意义下的状态估计数学模型,然后采用离散优化技术解决EM算法中的极大化问题,最终确定出作...
为了提高在杂波环境下跟踪强机动目标的精度,提出了一种新的基于期望极大化(EM)算法的机动目标状态估计方法.首先建立了基于EM算法的最大后验概率意义下的状态估计数学模型,然后采用离散优化技术解决EM算法中的极大化问题,最终确定出作用于系统的实际机动输入序列,同时分离出源于目标的量测序列,进而获得对目标状态更精确的估计.它有效地解决了最大后验概率状态估计中的不完全数据问题.Monte Carlo仿真结果表明,新算法比传统的交互式多模型概率数据关联算法具有更优越的跟踪性能.
展开更多
关键词
杂波环境
机动输入序列
量测序列
联合最优估计
期望极大化算法
离散优化
机动目标跟踪
参数估计
下载PDF
职称材料
题名
杂波环境下机动输入序列和量测序列的联合最优估计
被引量:
1
1
作者
朱洪艳
韩崇昭
韩红
左东广
郑林
机构
西安交通大学电子与信息工程学院
出处
《西安交通大学学报》
EI
CAS
CSCD
北大核心
2003年第2期175-178,214,共5页
基金
国家重点基础研究发展规划“九七三”资助项目(2001CB309403).
文摘
为了提高在杂波环境下跟踪强机动目标的精度,提出了一种新的基于期望极大化(EM)算法的机动目标状态估计方法.首先建立了基于EM算法的最大后验概率意义下的状态估计数学模型,然后采用离散优化技术解决EM算法中的极大化问题,最终确定出作用于系统的实际机动输入序列,同时分离出源于目标的量测序列,进而获得对目标状态更精确的估计.它有效地解决了最大后验概率状态估计中的不完全数据问题.Monte Carlo仿真结果表明,新算法比传统的交互式多模型概率数据关联算法具有更优越的跟踪性能.
关键词
杂波环境
机动输入序列
量测序列
联合最优估计
期望极大化算法
离散优化
机动目标跟踪
参数估计
Keywords
expectation
maximization
algorithm
discrete
optimization
maneuver
input
sequence
measurement
sequence
分类号
TP274 [自动化与计算机技术—检测技术与自动化装置]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
杂波环境下机动输入序列和量测序列的联合最优估计
朱洪艳
韩崇昭
韩红
左东广
郑林
《西安交通大学学报》
EI
CAS
CSCD
北大核心
2003
1
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部