Maize/peanut intercropping system shows the significant yield advantage. Soil microbes play major roles in soil nutrient cycling and were affected by intercropping plants. This experiment was carried out to evaluate t...Maize/peanut intercropping system shows the significant yield advantage. Soil microbes play major roles in soil nutrient cycling and were affected by intercropping plants. This experiment was carried out to evaluate the changing of rhizosphere microbial community composition, and the relationship between microbial community and soil enzymatic activities, soil nutrients in maize/peanut intercropping system under the following three treatments: maize (Zea mays L.) and peanut (Arachis hypogaea L.) were intercropped without any separation (NS), by half separation (HS) using a nylon net (50 μm) and complete separation (CS) by using a plastic sheet, respectively. The soil microbial communities were assessed by phospholipid fatty acid (PLFA). We found that soil available nutrients (available nitrogen (Avail N) and available phosphorus (Avail P)) and enzymatic activities (soil urase and phosphomonoesterase) in both crops were improved in NS and HS treatments as compared to CS. Both bacterial and fungal biomasses in both crops were increased in NS followed by HS. Furthermore, Gram-positive bacteria (G+) in maize soils were significant higher in NS and HS than CS, while the Gram-negative (G-) was significant higher in peanut soil. The ratio of normal saturated to monounsaturated PLFAs was significantly higher in rhizosphere of peanut under CS treatment than in any other treatments, which is an indicator of nutrient stress. Redundancy analysis and cluster analysis of PLFA showed rhizospheric microbial community of NS and HS of both plants tended to be consistent. The urase and Avail N were higher in NS and HS of both plants and positively correlated with bacteria, fungi (F) and total PLFAs, while negatively correlated with G+/G- and NS/MS. The findings suggest that belowground interactions in maize/peanut intercropping system play important roles in changing the soil microbial composition and the dominant microbial species, which was closely related with the imp展开更多
为了明确玉米和花生同垄间作提高间作优势的光合机理,采用大田随机区组试验,以玉米和花生平作间作(FIC)为对照,分别在0(P0)和180 kg P_(2)O_(5)·hm^(-2)(P180)两个磷水平下,分析了玉米和花生同垄间作(RIC)与玉米和花生沟垄间作(GIC...为了明确玉米和花生同垄间作提高间作优势的光合机理,采用大田随机区组试验,以玉米和花生平作间作(FIC)为对照,分别在0(P0)和180 kg P_(2)O_(5)·hm^(-2)(P180)两个磷水平下,分析了玉米和花生同垄间作(RIC)与玉米和花生沟垄间作(GIC)对作物叶面积指数(LAI)、SPAD值、CO_(2)羧化能力、光系统间协调性和间作产量优势的影响。结果表明:与FIC和GIC相比,RIC显著提高了间作玉米吐丝期SPAD值及吐丝期、乳熟期功能叶的表观量子效率(AQY)、最大电子传递速率(Jmax)、最大羧化效率(V_(c,max))、CO_(2)饱和时的净光合速率(A_(max))和光系统间协调性(Φ_(PSⅠ/PSⅡ)),降低了乳熟期功能叶K相可变荧光Fk占F_(j)-F_(o)振幅的比例(Wk)和J相可变荧光F_(j)占F_(p)-F_(o)振幅的比例(V_(j)),各指标在FIC与GIC间差异不显著。与FIC相比,RIC和GIC能够提高间作花生生育后期LAI和结荚期SPAD值,显著提高了V_(c,max)、A_(max)和Φ_(PSⅠ/PSⅡ),降低荚果膨大期功能叶Wk和V_(j)值,各指标在RIC与GIC间差异不显著。RIC的土地当量比和间作产量优势均高于FIC和GIC;施磷能进一步促进间作玉米、花生功能叶的V_(c,max)、Jmax、A_(max)和Φ_(PSⅠ/PSⅡ),提高间作产量优势。表明同垄间作可通过改善间作玉米、花生功能叶的光合电子传递及光系统间协调性,增强CO_(2)羧化固定能力,提高光合速率,进而增加作物产量和间作优势。展开更多
Intercropping increases crop yields by optimizing light interception and/or use efficiency.Although intercropping combinations and metrics have been reported,the effects of plant density on light use are not well docu...Intercropping increases crop yields by optimizing light interception and/or use efficiency.Although intercropping combinations and metrics have been reported,the effects of plant density on light use are not well documented.Here,we examined the light interception and use efficiency in maize-peanut intercropping with different maize plant densities in two row configurations in semiarid dryland agriculture over a two-year period.The field experiment comprised four cropping systems,i.e.,monocropped maize,monocropped peanut,maize-peanut intercropping with two rows of maize and four rows of peanut,intercropping with four rows of maize and four rows of peanut,and three maize plant densities(3.0,4.5 and 6.0 plants m^(-1) row)in both monocropped and intercropping maize.The mean total light interception in intercropping across years and densities was 779 MJ·m^(-2),5.5%higher than in monocropped peanut(737 MJ·m^(-2))and 7.6%lower than in monocropped maize(843 MJ·m^(-2)).Increasing maize density increased light interception in monocropped maize but did not affect the total light interception in the intercrops.Across years the LUE of maize was 2.9 g·MJ–1 and was not affected by cropping system but increased with maize plant density.The LUE of peanut was enhanced in intercropping,especially in a wetter year.The yield advantage of maize-peanut intercropping resulted mainly from the LUE of peanut.These results will help to optimize agronomic management and system design and provide evidence for system level light use efficiency in intercropping.展开更多
基金supported by grants from the National Natural Science Foundation of China (81303170, 2012CB126309 and U1205021)the Chinese Postdoctoral Science Foundation (2013M541849)
文摘Maize/peanut intercropping system shows the significant yield advantage. Soil microbes play major roles in soil nutrient cycling and were affected by intercropping plants. This experiment was carried out to evaluate the changing of rhizosphere microbial community composition, and the relationship between microbial community and soil enzymatic activities, soil nutrients in maize/peanut intercropping system under the following three treatments: maize (Zea mays L.) and peanut (Arachis hypogaea L.) were intercropped without any separation (NS), by half separation (HS) using a nylon net (50 μm) and complete separation (CS) by using a plastic sheet, respectively. The soil microbial communities were assessed by phospholipid fatty acid (PLFA). We found that soil available nutrients (available nitrogen (Avail N) and available phosphorus (Avail P)) and enzymatic activities (soil urase and phosphomonoesterase) in both crops were improved in NS and HS treatments as compared to CS. Both bacterial and fungal biomasses in both crops were increased in NS followed by HS. Furthermore, Gram-positive bacteria (G+) in maize soils were significant higher in NS and HS than CS, while the Gram-negative (G-) was significant higher in peanut soil. The ratio of normal saturated to monounsaturated PLFAs was significantly higher in rhizosphere of peanut under CS treatment than in any other treatments, which is an indicator of nutrient stress. Redundancy analysis and cluster analysis of PLFA showed rhizospheric microbial community of NS and HS of both plants tended to be consistent. The urase and Avail N were higher in NS and HS of both plants and positively correlated with bacteria, fungi (F) and total PLFAs, while negatively correlated with G+/G- and NS/MS. The findings suggest that belowground interactions in maize/peanut intercropping system play important roles in changing the soil microbial composition and the dominant microbial species, which was closely related with the imp
文摘为了明确玉米和花生同垄间作提高间作优势的光合机理,采用大田随机区组试验,以玉米和花生平作间作(FIC)为对照,分别在0(P0)和180 kg P_(2)O_(5)·hm^(-2)(P180)两个磷水平下,分析了玉米和花生同垄间作(RIC)与玉米和花生沟垄间作(GIC)对作物叶面积指数(LAI)、SPAD值、CO_(2)羧化能力、光系统间协调性和间作产量优势的影响。结果表明:与FIC和GIC相比,RIC显著提高了间作玉米吐丝期SPAD值及吐丝期、乳熟期功能叶的表观量子效率(AQY)、最大电子传递速率(Jmax)、最大羧化效率(V_(c,max))、CO_(2)饱和时的净光合速率(A_(max))和光系统间协调性(Φ_(PSⅠ/PSⅡ)),降低了乳熟期功能叶K相可变荧光Fk占F_(j)-F_(o)振幅的比例(Wk)和J相可变荧光F_(j)占F_(p)-F_(o)振幅的比例(V_(j)),各指标在FIC与GIC间差异不显著。与FIC相比,RIC和GIC能够提高间作花生生育后期LAI和结荚期SPAD值,显著提高了V_(c,max)、A_(max)和Φ_(PSⅠ/PSⅡ),降低荚果膨大期功能叶Wk和V_(j)值,各指标在RIC与GIC间差异不显著。RIC的土地当量比和间作产量优势均高于FIC和GIC;施磷能进一步促进间作玉米、花生功能叶的V_(c,max)、Jmax、A_(max)和Φ_(PSⅠ/PSⅡ),提高间作产量优势。表明同垄间作可通过改善间作玉米、花生功能叶的光合电子传递及光系统间协调性,增强CO_(2)羧化固定能力,提高光合速率,进而增加作物产量和间作优势。
基金This research was funded by the National Key R&D Program of China(2016YFD0300202)the China Institute of Water Resources and Hydropower Research Team Construction and Talent Development Project(JZ0145B752017)+1 种基金the International Cooperation and Exchange of the National Science Foundation of China(31461143025)The work was partly funded by the European Union through the Horizon 2020 Program for Research and Innovation under grant agreement No.727217(ReMIX:redesigning European cropping systems based on species MIXtures).
文摘Intercropping increases crop yields by optimizing light interception and/or use efficiency.Although intercropping combinations and metrics have been reported,the effects of plant density on light use are not well documented.Here,we examined the light interception and use efficiency in maize-peanut intercropping with different maize plant densities in two row configurations in semiarid dryland agriculture over a two-year period.The field experiment comprised four cropping systems,i.e.,monocropped maize,monocropped peanut,maize-peanut intercropping with two rows of maize and four rows of peanut,intercropping with four rows of maize and four rows of peanut,and three maize plant densities(3.0,4.5 and 6.0 plants m^(-1) row)in both monocropped and intercropping maize.The mean total light interception in intercropping across years and densities was 779 MJ·m^(-2),5.5%higher than in monocropped peanut(737 MJ·m^(-2))and 7.6%lower than in monocropped maize(843 MJ·m^(-2)).Increasing maize density increased light interception in monocropped maize but did not affect the total light interception in the intercrops.Across years the LUE of maize was 2.9 g·MJ–1 and was not affected by cropping system but increased with maize plant density.The LUE of peanut was enhanced in intercropping,especially in a wetter year.The yield advantage of maize-peanut intercropping resulted mainly from the LUE of peanut.These results will help to optimize agronomic management and system design and provide evidence for system level light use efficiency in intercropping.