In this paper, the behavior of two collinear cracks in magneto-electro-elastic compos- ite material under anti-plane shear stress loading is studied by the Schmidt method for permeable electric boundary conditions. By...In this paper, the behavior of two collinear cracks in magneto-electro-elastic compos- ite material under anti-plane shear stress loading is studied by the Schmidt method for permeable electric boundary conditions. By using the Fourier transform, the problem can be solved with a set of triple integral equations in which the unknown variable is the jump of displacements across the crack surfaces. In solving the triple integral equations, the unknown variable is expanded in a series of Jacobi polynomials. Numerical solutions are obtained. It is shown that the stress feld is independent of the electric feld and the magnetic fux.展开更多
The dynamic behavior of two parallel symmetry cracks in magneto-electro-elastic composites under harmonic anti-plane shear waves is studied by Schmidt method. By using the Fourier transform, the problem can be solved ...The dynamic behavior of two parallel symmetry cracks in magneto-electro-elastic composites under harmonic anti-plane shear waves is studied by Schmidt method. By using the Fourier transform, the problem can be solved with a pair of dual integral equations in which the unknown variable is the jumps of the displacements across the crack surfaces. To solve the dual integral equations, the jumps of the displacements across the crack surface were expanded in a series of Jacobi polynomials. The relations among the electric filed, the magnetic flux and the stress field were obtained. From the results, it can be obtained that the singular stresses in piezoelectric/piezomagnetic materials carry the same forms as those in a general elastic material for the dynamic anti-plane shear fracture problem. The shielding effect of two parallel cracks was also discussed.展开更多
基金Project supported by the SRF for ROCS,SEM,the National Natural Science Foundation of Heilongjiang Province(No.A0301)and the Multidiscipline Scientifc Research Foundation of Harbin Institute of Technology(HIT.MD2001.39).
文摘In this paper, the behavior of two collinear cracks in magneto-electro-elastic compos- ite material under anti-plane shear stress loading is studied by the Schmidt method for permeable electric boundary conditions. By using the Fourier transform, the problem can be solved with a set of triple integral equations in which the unknown variable is the jump of displacements across the crack surfaces. In solving the triple integral equations, the unknown variable is expanded in a series of Jacobi polynomials. Numerical solutions are obtained. It is shown that the stress feld is independent of the electric feld and the magnetic fux.
基金Project supported by the National Natural Science Foundation of China (Nos.50232030, 10172030, 10572043)the Natural Science Foundation for Distinguished Young Scholars of Heilongjiang Province (No.JC04-08)the Natural Science Foundation of Heilongjiang Province (No.A0301)
文摘The dynamic behavior of two parallel symmetry cracks in magneto-electro-elastic composites under harmonic anti-plane shear waves is studied by Schmidt method. By using the Fourier transform, the problem can be solved with a pair of dual integral equations in which the unknown variable is the jumps of the displacements across the crack surfaces. To solve the dual integral equations, the jumps of the displacements across the crack surface were expanded in a series of Jacobi polynomials. The relations among the electric filed, the magnetic flux and the stress field were obtained. From the results, it can be obtained that the singular stresses in piezoelectric/piezomagnetic materials carry the same forms as those in a general elastic material for the dynamic anti-plane shear fracture problem. The shielding effect of two parallel cracks was also discussed.