This study investigated the removal of dissolved organic matter(DOM) from real dyeing bio-treatment effluents(DBEs) with the use of a novel magnetic anion exchange resin(NDMP).DOMs in two typical DBEs were fract...This study investigated the removal of dissolved organic matter(DOM) from real dyeing bio-treatment effluents(DBEs) with the use of a novel magnetic anion exchange resin(NDMP).DOMs in two typical DBEs were fractionized using DAX-8/XAD-4 resin and ultrafiltration membranes. The hydrophilic fractions and the low molecular weight(MW)(〈3 kDa) DOM fractions constituted a major portion(〉50%) of DOMs for the two effluents. The hydrophilic and low MW fractions of both effluents were the greatest contributors of specific UV254absorbance(SUVA254),and the SUVA254 of DOM fractions decreased with hydrophobicity and MW. Two DBEs exhibited acute and chronic biotoxicities. Both acute and chronic toxicities of DOM fractions increased linearly with the increase of SUVA254 value. Kinetics of dissolved organic carbon(DOC) removal via NDMP treatment was performed by comparing it with that of particle active carbon(PAC). Results indicated that the removal of DOC from DBEs via NDMP was 60%,whereas DOC removals by PAC were lower than 15%. Acidic organics could be significantly removed with the use of NDMP. DOM with large MW in DBE could be removed significantly by using the same means. Removal efficiency of NDMP for DOM decreased with the decrease of MW. Compared with PAC,NDMP could significantly reduce the acute and chronic bio-toxicities of DBEs. NaCl/NaOH mixture regenerants,with selected concentrations of 10% NaCl(m/m)/1%NaOH(m/m),could improve desorption efficiency.展开更多
A novel magnetic weak acid resin NDMC-1 was prepared in the presence of methyl acrylate (MA), divinylbenzene (DVB) and titanate coupling agent (TCA) coated γ-Fe203 particles. To evaluate the adsorption of Cu^2...A novel magnetic weak acid resin NDMC-1 was prepared in the presence of methyl acrylate (MA), divinylbenzene (DVB) and titanate coupling agent (TCA) coated γ-Fe203 particles. To evaluate the adsorption of Cu^2+ on the obtained resin NDMC- 1, another two magnetic resins NDMC-0 (the precursor of NDMC-1 without hydrolyzation) and NDMO-1 (the synthesized weak acid resin using oleic acid coated γ-Fe2O3) were chosen for comparison. The results showed that the carboxyl groups were formed after hydrolyzation, and NDMC-1 exhibited a greater adsorption capacity to Cu2~. The desorption experiment demonstrated that the desorption ratio at pH 2 (95.14%) was greatly higher than pH 3 (25.97%). Moreover, the magnetic resin NDMC-1 was proved to be stable at pH 2, extending the application of magnetic materials which were always considered to be acid-nor, resistant.展开更多
Magnetic anion exchange resin (MD-1) was prepared from quaternization of magnetic copolymeric resin (glycidyl methacry- late-co-divinylbenzene). For comparison, magnetic resin MD-0 without quaternization and non-m...Magnetic anion exchange resin (MD-1) was prepared from quaternization of magnetic copolymeric resin (glycidyl methacry- late-co-divinylbenzene). For comparison, magnetic resin MD-0 without quaternization and non-magnetic resin (D-l) were also synthesized for the adsorption process. It was found that the adsorption was mainly contributed to the chemical interaction between quaternary ammonium groups and reactive blue RXHC. Due to the smaller size, MD- 1 had faster adsorption and desorption kinetics than D-1. Coupled with the advantage of easy separation, the magnetic anion exchange resin was considered to be superior to common anion exchange resin in removal of reactive dye.展开更多
A novel magnetic anion exchange resin NDM-1 was prepared through suspension polymerization and then functionalized with ammonolysis and alkylating agents.Its application for selective removal of nitrate was performed ...A novel magnetic anion exchange resin NDM-1 was prepared through suspension polymerization and then functionalized with ammonolysis and alkylating agents.Its application for selective removal of nitrate was performed in comparison with MIEX.The results demonstrated that NDM-1 achieved higher efficiency in nitrate removal than MIEX did,with or without the existence of competing anion SO_4^2- ascribed to its longer alkyl chains on exchange sites.Combined with the advantage of easy separation due toγ-Fe_2O_3 implanted,the magnetic anion exchange resin NDM-1 was considered to be superior to MIEX for nitrate removal in practical application.展开更多
基金supported by the Program for Changjiang Scholars and Innovative Research Team in University (Nos.51208249,51290282)Natural Science Foundation of China (Nos.51178215,51308283)+1 种基金the Jiangsu Nature Science Fund,China (Nos.BK2010006,BK2011032)the Joint Innovation Project for Production-Study-Research in Jiangsu Province,China (No.BY2013061)
文摘This study investigated the removal of dissolved organic matter(DOM) from real dyeing bio-treatment effluents(DBEs) with the use of a novel magnetic anion exchange resin(NDMP).DOMs in two typical DBEs were fractionized using DAX-8/XAD-4 resin and ultrafiltration membranes. The hydrophilic fractions and the low molecular weight(MW)(〈3 kDa) DOM fractions constituted a major portion(〉50%) of DOMs for the two effluents. The hydrophilic and low MW fractions of both effluents were the greatest contributors of specific UV254absorbance(SUVA254),and the SUVA254 of DOM fractions decreased with hydrophobicity and MW. Two DBEs exhibited acute and chronic biotoxicities. Both acute and chronic toxicities of DOM fractions increased linearly with the increase of SUVA254 value. Kinetics of dissolved organic carbon(DOC) removal via NDMP treatment was performed by comparing it with that of particle active carbon(PAC). Results indicated that the removal of DOC from DBEs via NDMP was 60%,whereas DOC removals by PAC were lower than 15%. Acidic organics could be significantly removed with the use of NDMP. DOM with large MW in DBE could be removed significantly by using the same means. Removal efficiency of NDMP for DOM decreased with the decrease of MW. Compared with PAC,NDMP could significantly reduce the acute and chronic bio-toxicities of DBEs. NaCl/NaOH mixture regenerants,with selected concentrations of 10% NaCl(m/m)/1%NaOH(m/m),could improve desorption efficiency.
基金support provided by Program for Changjiang Scholars,NSFC(Nos. 51178215 and 51208249)Jiangsu Nature Science Fund(Nos.BK2010006 and BK2011032)Joint Innovation Project for Production-Study-Research in Jiangsu Province(No.BY2012155) China
文摘A novel magnetic weak acid resin NDMC-1 was prepared in the presence of methyl acrylate (MA), divinylbenzene (DVB) and titanate coupling agent (TCA) coated γ-Fe203 particles. To evaluate the adsorption of Cu^2+ on the obtained resin NDMC- 1, another two magnetic resins NDMC-0 (the precursor of NDMC-1 without hydrolyzation) and NDMO-1 (the synthesized weak acid resin using oleic acid coated γ-Fe2O3) were chosen for comparison. The results showed that the carboxyl groups were formed after hydrolyzation, and NDMC-1 exhibited a greater adsorption capacity to Cu2~. The desorption experiment demonstrated that the desorption ratio at pH 2 (95.14%) was greatly higher than pH 3 (25.97%). Moreover, the magnetic resin NDMC-1 was proved to be stable at pH 2, extending the application of magnetic materials which were always considered to be acid-nor, resistant.
基金support provided by the State Key Program of National Natural Science(No.50938004)the National Nature Science Fund for Distinguished Young Scientists(No.50825802)+1 种基金Jiangsu Nature Science Fund(No.BK2010006)the Resources Key Subject of National High Technology Research & Development Project(No.2009AA06Z315 and SQ2009AA06XK1482331),China
文摘Magnetic anion exchange resin (MD-1) was prepared from quaternization of magnetic copolymeric resin (glycidyl methacry- late-co-divinylbenzene). For comparison, magnetic resin MD-0 without quaternization and non-magnetic resin (D-l) were also synthesized for the adsorption process. It was found that the adsorption was mainly contributed to the chemical interaction between quaternary ammonium groups and reactive blue RXHC. Due to the smaller size, MD- 1 had faster adsorption and desorption kinetics than D-1. Coupled with the advantage of easy separation, the magnetic anion exchange resin was considered to be superior to common anion exchange resin in removal of reactive dye.
基金provided by Program for Changjiang Scholars and Innovative Research Team in University,NSFC(Nos.50825802 and 51178215)Jiangsu Natural Science Fund(Nos. BK2010006 and BK2011032),China
文摘A novel magnetic anion exchange resin NDM-1 was prepared through suspension polymerization and then functionalized with ammonolysis and alkylating agents.Its application for selective removal of nitrate was performed in comparison with MIEX.The results demonstrated that NDM-1 achieved higher efficiency in nitrate removal than MIEX did,with or without the existence of competing anion SO_4^2- ascribed to its longer alkyl chains on exchange sites.Combined with the advantage of easy separation due toγ-Fe_2O_3 implanted,the magnetic anion exchange resin NDM-1 was considered to be superior to MIEX for nitrate removal in practical application.