Red mud is the waste generated during aluminum production from bauxite, containing lots of iron and other valuable metals. In order to recover iron from red mud, the technology of adding sodium carbonate—reduction ro...Red mud is the waste generated during aluminum production from bauxite, containing lots of iron and other valuable metals. In order to recover iron from red mud, the technology of adding sodium carbonate—reduction roasting—magnetic separation to treat high-iron red mud was developed. The effects of sodium carbonate dosage, reduction temperature and reduction time on the qualities of final product and the phase transformations in reduction process were discussed in detail. The results showed that the final product (mass percent), assaying Fe of 90.87% and Al2O3 of 0.95% and metallization degree of 94.28% was obtained at an overall iron recovery of 95.76% under the following conditions of adding 8% sodium carbonate, reduction roasting at 1 050 ℃ for 80 min and finally magnetic separation of the reduced pellets by grinding up to 90% passing 0.074 mm at magnetic field intensity of 0.08 T. The XRD (X-ray diffraction) results indicated that the iron oxides were transformed into metallic iron. Most of aluminum mineral and silica mineral reacted with sodium carbonate during the reduction roasting and formed nonmagnetic materials.展开更多
Objective To evaluate the clinical impact of whole body diffusion weighted imaging (WB-DWI) on diagnosis and staging of malignant lymphoma. Methods Thirty-one patients with suspected lymphadenopathy were enrolled. ...Objective To evaluate the clinical impact of whole body diffusion weighted imaging (WB-DWI) on diagnosis and staging of malignant lymphoma. Methods Thirty-one patients with suspected lymphadenopathy were enrolled. WB-DWI was performed by using short TI inversion recovery echo-planar imaging sequence with free breathing and built-in body coil. Axial T2- weighted imaging images of the same location were used as reference. The results of WB-DWI were compared with pathological results and other imaging modalities. The mean apparent diffusion coefficient (ADC) values of different kinds of lymph nodes were compared. Results WB-DWI was positive in all 18 cases with lymphoma, 5 cases with metastatic lymph nodes and 4 of 8 eases with benign lymphadenopathy. The mean ADC value of lymphomatous, metastatic and benign lymph nodes was (0.87 ± 0.17) × 10^3, (0.98± 0.09) × 10^3 and (1.20 ± 0.10) × 10^3 mm^2/s. There was significant difference in ADC value between benign lymph nodes and other two groups (P 〈 0.01). The sensitivity, specificity and accuracy of WB-DWI in diagnosis of lymphoma were 100% (18/18), 30.8% (4/13) and 71.0% (22/31). When an ADC value of 1.08 × 10^-3 mm^2/s was used as the threshold value for differentiating malignant from benign lymph nodes, the best results were obtained with sensitivity of 87.8% and specificity of 91.3%. Sixteen of eighteen cases (88.9%) of lymphoma were accurately staged in accordance with clinical staging. Conclusions WB-DWI is a sensitive, but less specific technique for diagnosis of lymphoma. It is difficult to differentiate lymphnmatous from metastatic lymph nodes using WB-DWI. However, it is a valuable imaging modality for staging of patients with malignant lymphoma.展开更多
Many studies have shown that bio-scaffolds have important value for promoting axonal regeneration of injured spinal cord.Indeed,cell transplantation and bio-scaffold implantation are considered to be effective methods...Many studies have shown that bio-scaffolds have important value for promoting axonal regeneration of injured spinal cord.Indeed,cell transplantation and bio-scaffold implantation are considered to be effective methods for neural regeneration.This study was designed to fabricate a type of three-dimensional collagen/silk fibroin scaffold (3D-CF) with cavities that simulate the anatomy of normal spinal cord.This scaffold allows cell growth in vitro and in vivo.To observe the effects of combined transplantation of neural stem cells (NSCs) and 3D-CF on the repair of spinal cord injury.Forty Sprague-Dawley rats were divided into four groups: sham (only laminectomy was performed),spinal cord injury (transection injury of T10 spinal cord without any transplantation),3D-CF (3D scaffold was transplanted into the local injured cavity),and 3D-CF + NSCs (3D scaffold co-cultured with NSCs was transplanted into the local injured cavity.Neuroelectrophysiology,imaging,hematoxylin-eosin staining,argentaffin staining,immunofluorescence staining,and western blot assay were performed.Apart from the sham group,neurological scores were significantly higher in the 3D-CF + NSCs group compared with other groups.Moreover,latency of the 3D-CF + NSCs group was significantly reduced,while the amplitude was significantly increased in motor evoked potential tests.The results of magnetic resonance imaging and diffusion tensor imaging showed that both spinal cord continuity and the filling of injury cavity were the best in the 3D-CF + NSCs group.Moreover,regenerative axons were abundant and glial scarring was reduced in the 3D-CF + NSCs group compared with other groups.These results confirm that implantation of 3D-CF combined with NSCs can promote the repair of injured spinal cord.This study was approved by the Institutional Animal Care and Use Committee of People’s Armed Police Force Medical Center in 2017 (approval No.2017-0007.2).展开更多
Pretreatment of high content of Si- and Al-containing cyanide tailings by water leaching to remove some impurities, such as the major impurities minerals of Si and A1, as well as its effect on Fe extraction in the wat...Pretreatment of high content of Si- and Al-containing cyanide tailings by water leaching to remove some impurities, such as the major impurities minerals of Si and A1, as well as its effect on Fe extraction in the water leaching process was investigated. The effects of different parameters on iron recovery were studied, and the reaction parameters were proposed as follows: sodium carbonate content of 30%, water leaching at 60 ~C for 5 min, liquid/solid ratio of 15:1, and exciting current of 2 A. Under these optimal conditions, magnetic concentrate containing 59.11% total iron and a total iron recovery rate of 76.12% was obtained. In addition, the microstructure and phase transformation of the process of water leaching were studied by X-ray powder diffraction technique (XRD), Electronic image of backscattering (BEI), X-ray fluorescence (XRF), and energy dispersive spectrometry (EDS). The results indicate that the soluble compound impurities generated in the roasting process are washed out, and the dissoluble substances enter into nonmagnetic materials by water leaching, realizing the effective separation of impurities and Fe.展开更多
基金Item Sponsored by Hunan Provincial Innovation Foundation for Postgraduate of China ( CX2011B123 )
文摘Red mud is the waste generated during aluminum production from bauxite, containing lots of iron and other valuable metals. In order to recover iron from red mud, the technology of adding sodium carbonate—reduction roasting—magnetic separation to treat high-iron red mud was developed. The effects of sodium carbonate dosage, reduction temperature and reduction time on the qualities of final product and the phase transformations in reduction process were discussed in detail. The results showed that the final product (mass percent), assaying Fe of 90.87% and Al2O3 of 0.95% and metallization degree of 94.28% was obtained at an overall iron recovery of 95.76% under the following conditions of adding 8% sodium carbonate, reduction roasting at 1 050 ℃ for 80 min and finally magnetic separation of the reduced pellets by grinding up to 90% passing 0.074 mm at magnetic field intensity of 0.08 T. The XRD (X-ray diffraction) results indicated that the iron oxides were transformed into metallic iron. Most of aluminum mineral and silica mineral reacted with sodium carbonate during the reduction roasting and formed nonmagnetic materials.
文摘Objective To evaluate the clinical impact of whole body diffusion weighted imaging (WB-DWI) on diagnosis and staging of malignant lymphoma. Methods Thirty-one patients with suspected lymphadenopathy were enrolled. WB-DWI was performed by using short TI inversion recovery echo-planar imaging sequence with free breathing and built-in body coil. Axial T2- weighted imaging images of the same location were used as reference. The results of WB-DWI were compared with pathological results and other imaging modalities. The mean apparent diffusion coefficient (ADC) values of different kinds of lymph nodes were compared. Results WB-DWI was positive in all 18 cases with lymphoma, 5 cases with metastatic lymph nodes and 4 of 8 eases with benign lymphadenopathy. The mean ADC value of lymphomatous, metastatic and benign lymph nodes was (0.87 ± 0.17) × 10^3, (0.98± 0.09) × 10^3 and (1.20 ± 0.10) × 10^3 mm^2/s. There was significant difference in ADC value between benign lymph nodes and other two groups (P 〈 0.01). The sensitivity, specificity and accuracy of WB-DWI in diagnosis of lymphoma were 100% (18/18), 30.8% (4/13) and 71.0% (22/31). When an ADC value of 1.08 × 10^-3 mm^2/s was used as the threshold value for differentiating malignant from benign lymph nodes, the best results were obtained with sensitivity of 87.8% and specificity of 91.3%. Sixteen of eighteen cases (88.9%) of lymphoma were accurately staged in accordance with clinical staging. Conclusions WB-DWI is a sensitive, but less specific technique for diagnosis of lymphoma. It is difficult to differentiate lymphnmatous from metastatic lymph nodes using WB-DWI. However, it is a valuable imaging modality for staging of patients with malignant lymphoma.
基金supported by the National Natural Science Foundation of China,No.11672332(to XYC)the National Key Research and Development Plan of China,No.2016YFC1101500(to SZ)
文摘Many studies have shown that bio-scaffolds have important value for promoting axonal regeneration of injured spinal cord.Indeed,cell transplantation and bio-scaffold implantation are considered to be effective methods for neural regeneration.This study was designed to fabricate a type of three-dimensional collagen/silk fibroin scaffold (3D-CF) with cavities that simulate the anatomy of normal spinal cord.This scaffold allows cell growth in vitro and in vivo.To observe the effects of combined transplantation of neural stem cells (NSCs) and 3D-CF on the repair of spinal cord injury.Forty Sprague-Dawley rats were divided into four groups: sham (only laminectomy was performed),spinal cord injury (transection injury of T10 spinal cord without any transplantation),3D-CF (3D scaffold was transplanted into the local injured cavity),and 3D-CF + NSCs (3D scaffold co-cultured with NSCs was transplanted into the local injured cavity.Neuroelectrophysiology,imaging,hematoxylin-eosin staining,argentaffin staining,immunofluorescence staining,and western blot assay were performed.Apart from the sham group,neurological scores were significantly higher in the 3D-CF + NSCs group compared with other groups.Moreover,latency of the 3D-CF + NSCs group was significantly reduced,while the amplitude was significantly increased in motor evoked potential tests.The results of magnetic resonance imaging and diffusion tensor imaging showed that both spinal cord continuity and the filling of injury cavity were the best in the 3D-CF + NSCs group.Moreover,regenerative axons were abundant and glial scarring was reduced in the 3D-CF + NSCs group compared with other groups.These results confirm that implantation of 3D-CF combined with NSCs can promote the repair of injured spinal cord.This study was approved by the Institutional Animal Care and Use Committee of People’s Armed Police Force Medical Center in 2017 (approval No.2017-0007.2).
基金financially supported by the National Basic Research Program of China(Nos.2013CB632601 and 2013CB632604)the National Science Foundation for Distinguished Young Scholars of China(Nos.51125018 and 51504230)+2 种基金the Key Research Program of Chinese Academy of Sciences(No.KGZD-EW-201-2)the National Natural Science Foundation of China(Nos.51374191 and 2110616751104139)China Postdoctoral Science Foundation(Nos.2012M510552 and 2013T60175)
基金Projects(ZR2010EL006,Y2007F60) supported by the National Science Foundation of Shandong Province of ChinaProject(J12LA04) supported by High Education Science Technology Program of Shandong Province,China
文摘Pretreatment of high content of Si- and Al-containing cyanide tailings by water leaching to remove some impurities, such as the major impurities minerals of Si and A1, as well as its effect on Fe extraction in the water leaching process was investigated. The effects of different parameters on iron recovery were studied, and the reaction parameters were proposed as follows: sodium carbonate content of 30%, water leaching at 60 ~C for 5 min, liquid/solid ratio of 15:1, and exciting current of 2 A. Under these optimal conditions, magnetic concentrate containing 59.11% total iron and a total iron recovery rate of 76.12% was obtained. In addition, the microstructure and phase transformation of the process of water leaching were studied by X-ray powder diffraction technique (XRD), Electronic image of backscattering (BEI), X-ray fluorescence (XRF), and energy dispersive spectrometry (EDS). The results indicate that the soluble compound impurities generated in the roasting process are washed out, and the dissoluble substances enter into nonmagnetic materials by water leaching, realizing the effective separation of impurities and Fe.