AIM: To investigate the optimal magnetic pressure and provide a theoretical basis for choledochojejunostomy magnetic compressive anastomosis(magnamosis).METHODS: Four groups of neodymium-iron-boron magnets with differ...AIM: To investigate the optimal magnetic pressure and provide a theoretical basis for choledochojejunostomy magnetic compressive anastomosis(magnamosis).METHODS: Four groups of neodymium-iron-boron magnets with different magnetic pressures of 0.1, 0.2, 0.3 and 0.4 MPa were used to complete the choledochojejunostomy magnamosis. Twenty-six young mongrel dogs were randomly divided into five groups: four groups with different magnetic pressures and 1 group with a hand-suture anastomosis. Serum bilirubin levels were measured in all groups before and 1 wk, 2 wk, 3 wk, 1 mo and 3 mo after surgery. Daily abdominal X-ray fluoroscopy was carried out postoperatively to detect the path and the excretion of the magnet. The animals were euthanized at 1 or 3 mo after the operation, the burst pressure was detected in each anastomosis, and the gross appearance and histology were compared according to the observation.RESULTS: The surgical procedures were all successfully performed in animals. However, animals of group D(magnetic pressure of 0.4 MPa) all experienced complications with bile leakage(4/4), whereas half of animals in group A(magnetic pressure of 0.1 MPa) experienced complications(3/6), 1 animal in the manual group E developed anastomotic stenosis, and animals in group B and group C(magnetic pressure of 0.2 MPa and 0.3 MPa, respectively) all healed well without complications. These results also suggested that the time required to form the stoma was inversely proportional to the magnetic pressure; however, the burst pressure of group A was smaller than those of the other groups at 1 mo(187.5 ± 17.7 vs 290 ± 10/296.7 ± 5.7/287.5 ± 3.5, P < 0.05); the remaining groups did not differ significantly. A histologic examination demonstrated obvious differences between the magnamosis groups and the hand-sewn group.CONCLUSION: We proved that the optimal range for choledochojejunostomy magnamosis is 0.2 MPa to 0.3 MPa, which will help to improve the clinical application of this technique in the future.展开更多
A link between the electromagnetic code, ANSYS/Emag and the structural code, Ls-dyna was developed, and the numerical modeling of electromagnetic forming for aluminum alloy tube expansion was performed by means of the...A link between the electromagnetic code, ANSYS/Emag and the structural code, Ls-dyna was developed, and the numerical modeling of electromagnetic forming for aluminum alloy tube expansion was performed by means of them (discharge energy 0.75kJ). A realistic distribution of magnetic pressure was calculated. The calculated values of displacement along the tube axis and versus time are in very good agreement with the measured ones. The maximum strain rate is 1122s -1, which is not large enough to change the constitutive equations of aluminum alloy. With the augment of discharge energy (0.51.0kJ), the relative errors of the maximum deformation increase from 2.93% to 11.4%. Therefore, coupled numerical modeling of the electromagnetic field and the structural field should be performed to investigate the electromagnetic forming with larger deformation.展开更多
A MEMS piezoresistive magnetic field sensor based on a silicon bridge structure has been simulated and tested. The sensor consists of a silicon sensitivity diaphragm embedded with a piezoresistive Wheatstone bridge, a...A MEMS piezoresistive magnetic field sensor based on a silicon bridge structure has been simulated and tested. The sensor consists of a silicon sensitivity diaphragm embedded with a piezoresistive Wheatstone bridge, and a ferromagnetic magnet adhered to the sensitivity diaphragm. When the sensor is subjected to an external magnetic field, the magnetic force bends the silicon sensitivity diaphragm, producing stress and resistors change of the Wheatstone bridge and the output voltage of the sensor. Good agreement is observed between the theory and measurement behavior of the magnetic field sensor. Experimental results demonstrate that the maximum sensitivity and minimum resolution are 48 mV/T and 160 μT, respectively, making this device suitable for strong magnetic field measurement. Research results indicate that the sensor repeatability and dynamic response time are about 0.66% and 150 ms, respectively.展开更多
In this paper,the influence of various field shapers and their shapes on the distribution of the magnetic flux densities and applied forces on the work-piece in the electromagnetic inward tube forming are studied nume...In this paper,the influence of various field shapers and their shapes on the distribution of the magnetic flux densities and applied forces on the work-piece in the electromagnetic inward tube forming are studied numerically using the FEA software MAXWELL.First the model was verified with experimental results and thereafter four kinds of field shapers(conical,cylindrical,concave and convex)were considered.Effects of their geometries,such as air gap between field shaper and tube work-piece,height of the step in single and multiple stepped field shaper on magnetic flux densities and magnetic pressures were studied.The results of this research can be applied to design field shaper,tube compression technology,and improve the efficiency of the coil.It is seen that magnetic force decreases if height of step in convex field shaper increases but effective forming region enlarges.Decreasing air gap has also a positive influence on magnetic field increase.Though the object of this research is limited to field shaper for inward tube forming,the results can also be applied to the field shaper for tube bulging.展开更多
基金the National Natural Science Foundation of China,No.51275387the Project of Development and Innovation Team of Ministry of Education,No.IRT1279the Science and Technology Co-ordination and Innovation Project,Shaanxi Province of China,No.2011KTCQ03-12
文摘AIM: To investigate the optimal magnetic pressure and provide a theoretical basis for choledochojejunostomy magnetic compressive anastomosis(magnamosis).METHODS: Four groups of neodymium-iron-boron magnets with different magnetic pressures of 0.1, 0.2, 0.3 and 0.4 MPa were used to complete the choledochojejunostomy magnamosis. Twenty-six young mongrel dogs were randomly divided into five groups: four groups with different magnetic pressures and 1 group with a hand-suture anastomosis. Serum bilirubin levels were measured in all groups before and 1 wk, 2 wk, 3 wk, 1 mo and 3 mo after surgery. Daily abdominal X-ray fluoroscopy was carried out postoperatively to detect the path and the excretion of the magnet. The animals were euthanized at 1 or 3 mo after the operation, the burst pressure was detected in each anastomosis, and the gross appearance and histology were compared according to the observation.RESULTS: The surgical procedures were all successfully performed in animals. However, animals of group D(magnetic pressure of 0.4 MPa) all experienced complications with bile leakage(4/4), whereas half of animals in group A(magnetic pressure of 0.1 MPa) experienced complications(3/6), 1 animal in the manual group E developed anastomotic stenosis, and animals in group B and group C(magnetic pressure of 0.2 MPa and 0.3 MPa, respectively) all healed well without complications. These results also suggested that the time required to form the stoma was inversely proportional to the magnetic pressure; however, the burst pressure of group A was smaller than those of the other groups at 1 mo(187.5 ± 17.7 vs 290 ± 10/296.7 ± 5.7/287.5 ± 3.5, P < 0.05); the remaining groups did not differ significantly. A histologic examination demonstrated obvious differences between the magnamosis groups and the hand-sewn group.CONCLUSION: We proved that the optimal range for choledochojejunostomy magnamosis is 0.2 MPa to 0.3 MPa, which will help to improve the clinical application of this technique in the future.
文摘A link between the electromagnetic code, ANSYS/Emag and the structural code, Ls-dyna was developed, and the numerical modeling of electromagnetic forming for aluminum alloy tube expansion was performed by means of them (discharge energy 0.75kJ). A realistic distribution of magnetic pressure was calculated. The calculated values of displacement along the tube axis and versus time are in very good agreement with the measured ones. The maximum strain rate is 1122s -1, which is not large enough to change the constitutive equations of aluminum alloy. With the augment of discharge energy (0.51.0kJ), the relative errors of the maximum deformation increase from 2.93% to 11.4%. Therefore, coupled numerical modeling of the electromagnetic field and the structural field should be performed to investigate the electromagnetic forming with larger deformation.
基金Project supported by the National Natural Science Foundation of China(No.60871024)
文摘A MEMS piezoresistive magnetic field sensor based on a silicon bridge structure has been simulated and tested. The sensor consists of a silicon sensitivity diaphragm embedded with a piezoresistive Wheatstone bridge, and a ferromagnetic magnet adhered to the sensitivity diaphragm. When the sensor is subjected to an external magnetic field, the magnetic force bends the silicon sensitivity diaphragm, producing stress and resistors change of the Wheatstone bridge and the output voltage of the sensor. Good agreement is observed between the theory and measurement behavior of the magnetic field sensor. Experimental results demonstrate that the maximum sensitivity and minimum resolution are 48 mV/T and 160 μT, respectively, making this device suitable for strong magnetic field measurement. Research results indicate that the sensor repeatability and dynamic response time are about 0.66% and 150 ms, respectively.
文摘In this paper,the influence of various field shapers and their shapes on the distribution of the magnetic flux densities and applied forces on the work-piece in the electromagnetic inward tube forming are studied numerically using the FEA software MAXWELL.First the model was verified with experimental results and thereafter four kinds of field shapers(conical,cylindrical,concave and convex)were considered.Effects of their geometries,such as air gap between field shaper and tube work-piece,height of the step in single and multiple stepped field shaper on magnetic flux densities and magnetic pressures were studied.The results of this research can be applied to design field shaper,tube compression technology,and improve the efficiency of the coil.It is seen that magnetic force decreases if height of step in convex field shaper increases but effective forming region enlarges.Decreasing air gap has also a positive influence on magnetic field increase.Though the object of this research is limited to field shaper for inward tube forming,the results can also be applied to the field shaper for tube bulging.