Developing microwave absorption(MA)materials with satisfied comprehensive performance is a great challenge for tackling severe electromagnetic pollution.In particular,the magnetic component/carbon hybrids absorbers al...Developing microwave absorption(MA)materials with satisfied comprehensive performance is a great challenge for tackling severe electromagnetic pollution.In particular,the magnetic component/carbon hybrids absorbers always suffer from high filler loading.Herein,we propose a feasible strategy to construct hierarchical porous carbon with tightly embedded Ni nanoparticles(Ni@NPC).These highly dispersed Ni nanoparticles produce strong magnetic coupling networks to enhance magnetic loss abilities.Moreover,the interconnected hierarchical dielectric carbon network affords favorable dipolar/interfacial polarization,conduction loss,multiple reflection and scattering.Impressively,with an ultralow filler loading of 5 wt.%,the resultant Ni@NPC/paraffin composite achieves an excellent MA performance with a minimum reflection loss of as high as-72.4 dB and a broad absorption bandwidth of 5.0 GHz.This capability outperforms most current magnetic-dielectric hybrids counterparts.Furthermore,the MA capacity can be easily tuned with adjustments in thickness,content and type of magnetic material.Thus,this work opens up new avenues for the development of high-performance and lightweight MA materials.展开更多
This study presents an analytical solution of thermal and mechanical displacements, strains, and stresses for a thick-walled rotating spherical pressure vessel made of functionally graded materials (FGMs). The pressur...This study presents an analytical solution of thermal and mechanical displacements, strains, and stresses for a thick-walled rotating spherical pressure vessel made of functionally graded materials (FGMs). The pressure vessel is subject to axisymmetric mechanical and thermal loadings within a uniform magnetic field. The material properties of the FGM are considered as the power-law distribution along the thickness. Navier’s equation, which is a second-order ordinary differential equation, is derived from the mechanical equilibrium equation with the consideration of the thermal stresses and the Lorentz force resulting from the magnetic field. The distributions of the displacement, strains, and stresses are determined by the exact solution to Navier’s equation. Numerical results clarify the influence of the thermal loading, magnetic field, non-homogeneity constant, internal pressure, and angular velocity on the magneto-thermo-elastic response of the functionally graded spherical vessel. It is observed that these parameters have remarkable effects on the distributions of radial displacement, radial and circumferential strains, and radial and circumferential stresses.展开更多
Force spectrum measurements with constant loading rates are widely used in single-molecule manipulation experiments to study the mechanical stability and force response of biomolecules.Force-dependent transition rates...Force spectrum measurements with constant loading rates are widely used in single-molecule manipulation experiments to study the mechanical stability and force response of biomolecules.Force-dependent transition rates can be obtained from the transition force distribution,but it is limited to the force range with non-zero force distribution.Although constant loading rate control can be realized with magnetic tweezers,the loading rate range is limited due to the slow movement of permanent magnets.Non-linear exponential and exponential squared force loading functions are more feasible in magnetic tweezers,while there is no theoretical result available for these two kinds of non-linear force loading functions.In this study,we solved the unfolding process of a protein following Bell's model under nonlinear exponential and exponential squared force loading functions,which offer a broader range of unfolding force distribution compared to the traditional constant loading rate experiments.Furthermore,we derived two force loading functions,which can produce uniform unfolding force distribution.This research contributes fundamental equations for the analysis of experimental data obtained through single-molecule manipulation under nonlinear force loading controls,paving the way for the use of nonlinear force control in magnetic tweezer experiments.展开更多
基金financially supported by the National Natural Science Foundation of China(Nos.21776308 and 21908245)the Science Foundation of China University of Petroleum,Beijing(No.2462018YJRC009)the China Postdoctoral Science Foundation(No.2018T110187)。
文摘Developing microwave absorption(MA)materials with satisfied comprehensive performance is a great challenge for tackling severe electromagnetic pollution.In particular,the magnetic component/carbon hybrids absorbers always suffer from high filler loading.Herein,we propose a feasible strategy to construct hierarchical porous carbon with tightly embedded Ni nanoparticles(Ni@NPC).These highly dispersed Ni nanoparticles produce strong magnetic coupling networks to enhance magnetic loss abilities.Moreover,the interconnected hierarchical dielectric carbon network affords favorable dipolar/interfacial polarization,conduction loss,multiple reflection and scattering.Impressively,with an ultralow filler loading of 5 wt.%,the resultant Ni@NPC/paraffin composite achieves an excellent MA performance with a minimum reflection loss of as high as-72.4 dB and a broad absorption bandwidth of 5.0 GHz.This capability outperforms most current magnetic-dielectric hybrids counterparts.Furthermore,the MA capacity can be easily tuned with adjustments in thickness,content and type of magnetic material.Thus,this work opens up new avenues for the development of high-performance and lightweight MA materials.
文摘This study presents an analytical solution of thermal and mechanical displacements, strains, and stresses for a thick-walled rotating spherical pressure vessel made of functionally graded materials (FGMs). The pressure vessel is subject to axisymmetric mechanical and thermal loadings within a uniform magnetic field. The material properties of the FGM are considered as the power-law distribution along the thickness. Navier’s equation, which is a second-order ordinary differential equation, is derived from the mechanical equilibrium equation with the consideration of the thermal stresses and the Lorentz force resulting from the magnetic field. The distributions of the displacement, strains, and stresses are determined by the exact solution to Navier’s equation. Numerical results clarify the influence of the thermal loading, magnetic field, non-homogeneity constant, internal pressure, and angular velocity on the magneto-thermo-elastic response of the functionally graded spherical vessel. It is observed that these parameters have remarkable effects on the distributions of radial displacement, radial and circumferential strains, and radial and circumferential stresses.
基金supported by the National Natural Science Foundation of China (Grant Nos. 12174322 to HC, 12204124 to ZG, 32271367 and 12204389 to SL)the 111 project (Grant No. B16029)the Research Fund of Wenzhou Institute
文摘Force spectrum measurements with constant loading rates are widely used in single-molecule manipulation experiments to study the mechanical stability and force response of biomolecules.Force-dependent transition rates can be obtained from the transition force distribution,but it is limited to the force range with non-zero force distribution.Although constant loading rate control can be realized with magnetic tweezers,the loading rate range is limited due to the slow movement of permanent magnets.Non-linear exponential and exponential squared force loading functions are more feasible in magnetic tweezers,while there is no theoretical result available for these two kinds of non-linear force loading functions.In this study,we solved the unfolding process of a protein following Bell's model under nonlinear exponential and exponential squared force loading functions,which offer a broader range of unfolding force distribution compared to the traditional constant loading rate experiments.Furthermore,we derived two force loading functions,which can produce uniform unfolding force distribution.This research contributes fundamental equations for the analysis of experimental data obtained through single-molecule manipulation under nonlinear force loading controls,paving the way for the use of nonlinear force control in magnetic tweezer experiments.