Using XRD,TEM and VSM methods,the phase,morphology and magnetic property of iron hydroxide oxide(FeOOH) which has been prepared by low-temperature neutralization reaction under different magnetic fields were analyzed....Using XRD,TEM and VSM methods,the phase,morphology and magnetic property of iron hydroxide oxide(FeOOH) which has been prepared by low-temperature neutralization reaction under different magnetic fields were analyzed.It can be found that the magnetic field had a great influence on the product.Acicular goethite(α-FeOOH) was synthetized without magnetic field.When the magnetic flux density was increased to 0.1T,γ-FeOOH was obtained.If the magnetic field intensity was raised to 0.5T,the product was all composed of δ-FeOOH.Moreover,the crystallization of FeOOH was greatly influenced by magnetic field as well.Thermodynamic calculation results show that the magnetic free energy of chemical reaction reached to more than hundreds KJ/mol when the magnetic field is applied.It meaned that the application of magnetic field was conducived to producing the products with higher susceptibility.Even under the low magnetic field,due to the stability of the reaction products was broken by the magnetic field,the magnetic free energy was also effective.展开更多
Method is developed for self-consistent calculation of the energy spectrum of free energy and electrical disordered crystals. Processes of electron scattering on the ionic core potential of different sort, fluctuation...Method is developed for self-consistent calculation of the energy spectrum of free energy and electrical disordered crystals. Processes of electron scattering on the ionic core potential of different sort, fluctuations of charge, spin density and lattice vibrations are taken into account. Electronic states of the system are described using tight binding multiband model. The nature of the spin-dependent electron transport of carbon nanotubes with chromium atoms adsorbed on the surface is explained. The value of the spin polarization of electron transport is determined by the difference of the partial densities of states of electrons with opposite spin projection at the Fermi level and the difference between the relaxation times of electron states. The value of the spin polarization of the electric current increases with increasing of Cr atoms concentration and magnitude of the external magnetic field.展开更多
基金Item Sponsored by the National Natural Science Foundation of China(Key Basic Project,No.51034010)International cooperation project from Shanghai Science and Technology Commission(No.075207015)Key Basic Project from Science and Technology Commission of Shanghai Municipality(No.08JC1410000)
文摘Using XRD,TEM and VSM methods,the phase,morphology and magnetic property of iron hydroxide oxide(FeOOH) which has been prepared by low-temperature neutralization reaction under different magnetic fields were analyzed.It can be found that the magnetic field had a great influence on the product.Acicular goethite(α-FeOOH) was synthetized without magnetic field.When the magnetic flux density was increased to 0.1T,γ-FeOOH was obtained.If the magnetic field intensity was raised to 0.5T,the product was all composed of δ-FeOOH.Moreover,the crystallization of FeOOH was greatly influenced by magnetic field as well.Thermodynamic calculation results show that the magnetic free energy of chemical reaction reached to more than hundreds KJ/mol when the magnetic field is applied.It meaned that the application of magnetic field was conducived to producing the products with higher susceptibility.Even under the low magnetic field,due to the stability of the reaction products was broken by the magnetic field,the magnetic free energy was also effective.
文摘Method is developed for self-consistent calculation of the energy spectrum of free energy and electrical disordered crystals. Processes of electron scattering on the ionic core potential of different sort, fluctuations of charge, spin density and lattice vibrations are taken into account. Electronic states of the system are described using tight binding multiband model. The nature of the spin-dependent electron transport of carbon nanotubes with chromium atoms adsorbed on the surface is explained. The value of the spin polarization of electron transport is determined by the difference of the partial densities of states of electrons with opposite spin projection at the Fermi level and the difference between the relaxation times of electron states. The value of the spin polarization of the electric current increases with increasing of Cr atoms concentration and magnitude of the external magnetic field.