设计了包含双层空竹的超表面,通过调节其晶格周期实现了不同阶晶格模式与超表面本征模式间的耦合,获得了3个强耦合区,并在两个晶格周期处实现了弗里德里希–温特根型连续域束缚态(Friedrich-Wintgen bound states in the continuum,FW-B...设计了包含双层空竹的超表面,通过调节其晶格周期实现了不同阶晶格模式与超表面本征模式间的耦合,获得了3个强耦合区,并在两个晶格周期处实现了弗里德里希–温特根型连续域束缚态(Friedrich-Wintgen bound states in the continuum,FW-BIC)。基于耦合模理论对其进行分析,理论分析结果与模拟结果吻合,进一步证明了结构的有效性。讨论了在介质间隔层中基于强耦合和FW-BIC的局域磁场增强,发现最大磁场强度是入射太赫兹波磁场强度的41 209倍,且该值是单纯的由超表面电磁共振产生的磁场强度的4倍。这项研究将为强场太赫兹产生和太赫兹非线性研究提供参考。展开更多
Two-dimensional double nanoparticle (DNP) arrays are demonstrated theoretically, supporting the interaction between out-of-plane magnetic plasmons and in-plane lattice resonances, which can be achieved by tuning the...Two-dimensional double nanoparticle (DNP) arrays are demonstrated theoretically, supporting the interaction between out-of-plane magnetic plasmons and in-plane lattice resonances, which can be achieved by tuning the nanoparticle height or the array period due to the height-dependent magnetic resonance and the periodicity-dependent lattice resonance. The interplay between the two plasmon modes can lead to a remarkable change in resonance lineshape and an improvement on magnetic field enhancement. Simultaneous electric field and magnetic field enhancement can be obtained in the gap region between neighboring particles at two resonance frequencies as the interplay occurs, which presents “open” cavities as electromagnetic field hot spots for potential applications on detection and sensing. The results not only offer an attractive way to tune the optical responses of plasmonic nanostructure, but also provide further insight into the plasmon interactions in periodic nanostructure or metamaterials comprising multiple elements.展开更多
Sedimentation based processes are widely used in industry to separate particles from a liquid phase. Since the advent of the "Nanoworld" the demand for effective separation technologies has rapidly risen, calling fo...Sedimentation based processes are widely used in industry to separate particles from a liquid phase. Since the advent of the "Nanoworld" the demand for effective separation technologies has rapidly risen, calling for the development of new separation concepts, one of which lies in hybrid separation using the superposition of a magnetic field for magnetic particles. Possible product portfolio of such separation consists of pigment production, nanomagnetics production for electronics and bio separation, A promising step in that direction is magnetic field enhanced cake filtration, which has by now progressed from batch to continuous ooeration. In sedimentation processes in a mass force field the settling behaviour of particles strongly depends on physico-chemical properties, concentration and size distribution of the particles. By adjusting the pH, the interparticle forces, in particular the electrostatic repulsion, can be manipulated. For remanent magnetic particles such as magnetite, pre-treatment in a magnetic field could lead to a change of interparticle interactions. By magnetizing the particles apart from van der Waals attraction and electrostatic repulsion, an additional potential is induced, the magnetic attraction, which could easily dominate the other potentials and result in agglomeration in the primary minimum. By sedimentation analysis, a wide spectrum of parameters like pH, magnetic field strength and concentration have been investigated. The results show a strong increase of sedimentation velocity by magnetic flocculation of the raw suspension. This leads to a rise in throughput due to the acceleration of sedimentation kinetics by imparting a non-chemical interaction to the physico-chemical properties in the feed stream of the separation apparatus.展开更多
还原态硫化物是大气主要污染物之一。本研究利用自行研制的磁增强光电子电离便携式飞行时间质谱,对还原态硫化物的测量方法进行了研究。光电子由真空紫外灯发射的10.6 e V的光子照射金属电极表面产生,通过调节引出电压控制光电子能量发...还原态硫化物是大气主要污染物之一。本研究利用自行研制的磁增强光电子电离便携式飞行时间质谱,对还原态硫化物的测量方法进行了研究。光电子由真空紫外灯发射的10.6 e V的光子照射金属电极表面产生,通过调节引出电压控制光电子能量发生光电子电离。为提高光电子电离的效率,在电离区中设置了环形磁铁。利用SIMION软件模拟发现磁场的引入使电子呈螺旋运动,增加电子运动路径,同时实现电子向电离区中心的汇聚。实验结果表明,磁场的引入使3种还原态硫化物H2S,SO2和CS2的灵敏度分别提高了5.3、9.4和6.9倍,50 s检测时间对3种物质的检测限分别达到0.14、0.52和0.31 mg/m3(S/N=3)。结果表明,磁增强光电子电离的便携式飞行时间质谱仪有望应用于挥发性硫化物的源排放在线监测。展开更多
文摘设计了包含双层空竹的超表面,通过调节其晶格周期实现了不同阶晶格模式与超表面本征模式间的耦合,获得了3个强耦合区,并在两个晶格周期处实现了弗里德里希–温特根型连续域束缚态(Friedrich-Wintgen bound states in the continuum,FW-BIC)。基于耦合模理论对其进行分析,理论分析结果与模拟结果吻合,进一步证明了结构的有效性。讨论了在介质间隔层中基于强耦合和FW-BIC的局域磁场增强,发现最大磁场强度是入射太赫兹波磁场强度的41 209倍,且该值是单纯的由超表面电磁共振产生的磁场强度的4倍。这项研究将为强场太赫兹产生和太赫兹非线性研究提供参考。
基金Project supported by the National Natural Science Foundation of China(Grant Nos.10974183,11104252,61274012,and 51072184)the Specialized Re-search Fund for the Doctoral Program of Higher Education of China(Grant No.20114101110003)+4 种基金the Aeronautical Science Foundation of China(Grant No.2011ZF55015)the Basic and Frontier Technology Research Program of Henan Province,China(Grant Nos.112300410264 and 122300410162)the Foundation of University Young Key Teacher from Henan Province,China(Grant No.2012GGJS-146)the Key Program of Science and Technology of Henan Education Department,China(Grant Nos.12A140014 and 13A140693)the Postdoctoral Research Sponsorship of Henan Province,China(Grant No.2011002)
文摘Two-dimensional double nanoparticle (DNP) arrays are demonstrated theoretically, supporting the interaction between out-of-plane magnetic plasmons and in-plane lattice resonances, which can be achieved by tuning the nanoparticle height or the array period due to the height-dependent magnetic resonance and the periodicity-dependent lattice resonance. The interplay between the two plasmon modes can lead to a remarkable change in resonance lineshape and an improvement on magnetic field enhancement. Simultaneous electric field and magnetic field enhancement can be obtained in the gap region between neighboring particles at two resonance frequencies as the interplay occurs, which presents “open” cavities as electromagnetic field hot spots for potential applications on detection and sensing. The results not only offer an attractive way to tune the optical responses of plasmonic nanostructure, but also provide further insight into the plasmon interactions in periodic nanostructure or metamaterials comprising multiple elements.
文摘Sedimentation based processes are widely used in industry to separate particles from a liquid phase. Since the advent of the "Nanoworld" the demand for effective separation technologies has rapidly risen, calling for the development of new separation concepts, one of which lies in hybrid separation using the superposition of a magnetic field for magnetic particles. Possible product portfolio of such separation consists of pigment production, nanomagnetics production for electronics and bio separation, A promising step in that direction is magnetic field enhanced cake filtration, which has by now progressed from batch to continuous ooeration. In sedimentation processes in a mass force field the settling behaviour of particles strongly depends on physico-chemical properties, concentration and size distribution of the particles. By adjusting the pH, the interparticle forces, in particular the electrostatic repulsion, can be manipulated. For remanent magnetic particles such as magnetite, pre-treatment in a magnetic field could lead to a change of interparticle interactions. By magnetizing the particles apart from van der Waals attraction and electrostatic repulsion, an additional potential is induced, the magnetic attraction, which could easily dominate the other potentials and result in agglomeration in the primary minimum. By sedimentation analysis, a wide spectrum of parameters like pH, magnetic field strength and concentration have been investigated. The results show a strong increase of sedimentation velocity by magnetic flocculation of the raw suspension. This leads to a rise in throughput due to the acceleration of sedimentation kinetics by imparting a non-chemical interaction to the physico-chemical properties in the feed stream of the separation apparatus.
文摘还原态硫化物是大气主要污染物之一。本研究利用自行研制的磁增强光电子电离便携式飞行时间质谱,对还原态硫化物的测量方法进行了研究。光电子由真空紫外灯发射的10.6 e V的光子照射金属电极表面产生,通过调节引出电压控制光电子能量发生光电子电离。为提高光电子电离的效率,在电离区中设置了环形磁铁。利用SIMION软件模拟发现磁场的引入使电子呈螺旋运动,增加电子运动路径,同时实现电子向电离区中心的汇聚。实验结果表明,磁场的引入使3种还原态硫化物H2S,SO2和CS2的灵敏度分别提高了5.3、9.4和6.9倍,50 s检测时间对3种物质的检测限分别达到0.14、0.52和0.31 mg/m3(S/N=3)。结果表明,磁增强光电子电离的便携式飞行时间质谱仪有望应用于挥发性硫化物的源排放在线监测。