Using our recently published electron’s charge electromagnetic flux manifold fiber model of the electron, described by analytical method and numerical simulations, we show how the fine structure constant is embedded ...Using our recently published electron’s charge electromagnetic flux manifold fiber model of the electron, described by analytical method and numerical simulations, we show how the fine structure constant is embedded as a geometrical proportionality constant in three dimensional space of its charge manifold and how this dictates the first QED term one-loop contribution of its anomalous magnetic moment making for the first time a connection of its intrinsic characteristics with physical geometrical dimensions and therefore demonstrating that the physical electron charge cannot be dimensionless. We show that the fine structure constant (FSC) α, and anomalous magnetic moment α<sub>μ</sub> of the electron is related to the sphericity of its charge distribution which is not perfectly spherical and thus has a shape, and therefore its self-confined charge possesses measurable physical dimensions. We also explain why these are not yet able to be measured by past and current experiments and how possible we could succeed.展开更多
The mechanism of obtaining the fractional angular momentum by employing a trapped atom which possesses a permanent magnetic dipole moment in the background of two electric fields is reconsidered by using an alternativ...The mechanism of obtaining the fractional angular momentum by employing a trapped atom which possesses a permanent magnetic dipole moment in the background of two electric fields is reconsidered by using an alternative method. Then, we generalize this model to a noncommutative plane. We show that there are two different mechanisms,which include cooling down the atom to the negligibly small kinetic energy and modulating the density of electric charges to the critical value to get the fractional angular momentum theoretically.展开更多
文摘Using our recently published electron’s charge electromagnetic flux manifold fiber model of the electron, described by analytical method and numerical simulations, we show how the fine structure constant is embedded as a geometrical proportionality constant in three dimensional space of its charge manifold and how this dictates the first QED term one-loop contribution of its anomalous magnetic moment making for the first time a connection of its intrinsic characteristics with physical geometrical dimensions and therefore demonstrating that the physical electron charge cannot be dimensionless. We show that the fine structure constant (FSC) α, and anomalous magnetic moment α<sub>μ</sub> of the electron is related to the sphericity of its charge distribution which is not perfectly spherical and thus has a shape, and therefore its self-confined charge possesses measurable physical dimensions. We also explain why these are not yet able to be measured by past and current experiments and how possible we could succeed.
基金Supported by National Natural Science Foundation of China under Grant No.11465006partially supported by 20190234-SIP-IPN and the CONACyT under Grant No.288856-CB-2016
文摘The mechanism of obtaining the fractional angular momentum by employing a trapped atom which possesses a permanent magnetic dipole moment in the background of two electric fields is reconsidered by using an alternative method. Then, we generalize this model to a noncommutative plane. We show that there are two different mechanisms,which include cooling down the atom to the negligibly small kinetic energy and modulating the density of electric charges to the critical value to get the fractional angular momentum theoretically.