The obvious enhancement effect of magnetic nanoparticles(MNPs) introduced in Cr/Co/Cr/Au substrate on the pulsed magnetic field-modulated surface plasmon coupled emission(SPCE) was investigated,and the observed enhanc...The obvious enhancement effect of magnetic nanoparticles(MNPs) introduced in Cr/Co/Cr/Au substrate on the pulsed magnetic field-modulated surface plasmon coupled emission(SPCE) was investigated,and the observed enhancement factor was 4 comparing with the magnetic field modulated SPCE without MNPs.This is the new observation for the magnetic field modulated SPCE,and this method was designed as a biosensor,which to our knowledge,is the first application of magnetic field-modulated SPCE in biosensing and detection field.This strategy is a universal approach to increase the fluorescence signal and helps to build the new SPCE based stimulus-response system.展开更多
Liquid biopsy has become an emerging technology in the detection of cancer related biomarkers as well as the continuous monitoring of cancer treatment.There has been extensive research on the applications of magnetic ...Liquid biopsy has become an emerging technology in the detection of cancer related biomarkers as well as the continuous monitoring of cancer treatment.There has been extensive research on the applications of magnetic nanotechnologies in liquid biopsies from the separation of target analytes to the detection of cancer biomarkers.Magnetic separation plays an important role in increasing both the efficiency and sensitivity of the liquid biopsy process.The detection of cancer biomarkers through magnetic nanosensors also possesses many advantages such as low background noise,high sensitivity,short assay time,and the ability to detect multiple biomarkers at the same time.This review focuses on the recent advances of magnetic nanotechnologies in liquid biopsies for cancer detection and its future potential in comparison with other technologies.展开更多
A simple and rapid strategy to construct laccase biosensor for determination of catechol was investigated. Magnetic multiwalled carbon nanotubes (MMCNT) which possess excellent capability of electron transfer were pre...A simple and rapid strategy to construct laccase biosensor for determination of catechol was investigated. Magnetic multiwalled carbon nanotubes (MMCNT) which possess excellent capability of electron transfer were prepared by chemical coprecipitation method. Scanning electron microscope (SEM) and vibrating sample magnetometer (VSM) were used to identify its surfacetopography and magnetization, respectively. Laccase was immobilized on the MMCNT modified magnetic carbon paste electrode by the aid of chitosan/silica (CS) hybrid membrane. Using current-time detection method, the biosensor shows a linear response related to the concentration of catechol in the range from 10-7 to 0.165×10-3 mol/L. The corresponding detection limit is 3.34×10-8 mol/L based on signal-to-noise ratios (S/N) ≥3 under the optimized conditions. In addition, its response current retains 90% of the original after being stored for 45 d. The results indicate that this proposed strategy can be expected to develop other enzyme-based biosensors.展开更多
基金Financial support from the National Natural Science Foundation of China(Nos.21874110,21375111,21505109,21521004 and 21804098)the Fund of the Ministry of Education of China(No. IRT17R66)Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi(No.201802104)
文摘The obvious enhancement effect of magnetic nanoparticles(MNPs) introduced in Cr/Co/Cr/Au substrate on the pulsed magnetic field-modulated surface plasmon coupled emission(SPCE) was investigated,and the observed enhancement factor was 4 comparing with the magnetic field modulated SPCE without MNPs.This is the new observation for the magnetic field modulated SPCE,and this method was designed as a biosensor,which to our knowledge,is the first application of magnetic field-modulated SPCE in biosensing and detection field.This strategy is a universal approach to increase the fluorescence signal and helps to build the new SPCE based stimulus-response system.
基金the Institute of Engineering in Medicine of the University of Minnesota through FY18 IEM Seed Grant Funding Program and the Doctoral Dissertation Fellowship.
文摘Liquid biopsy has become an emerging technology in the detection of cancer related biomarkers as well as the continuous monitoring of cancer treatment.There has been extensive research on the applications of magnetic nanotechnologies in liquid biopsies from the separation of target analytes to the detection of cancer biomarkers.Magnetic separation plays an important role in increasing both the efficiency and sensitivity of the liquid biopsy process.The detection of cancer biomarkers through magnetic nanosensors also possesses many advantages such as low background noise,high sensitivity,short assay time,and the ability to detect multiple biomarkers at the same time.This review focuses on the recent advances of magnetic nanotechnologies in liquid biopsies for cancer detection and its future potential in comparison with other technologies.
基金Project(IRT0719) supported by the Program for Changjiang Scholars and Innovative Research Team in University, ChinaProjects (50978088, 51039001) supported by the National Natural Science Foundation of China+3 种基金Project(2009FJ1010) supported by the Hunan Key Scientific Research Program, ChinaProject(10JJ7005) supported by the Natural Science Foundation of Hunan Province, ChinaProjects(CX2009B080, CX2010B157) supported by the Hunan Provincial Innovation Foundation For PostgraduateProject supported by the Fundamental Research Funds for the Central Universities, Hunan University, China
文摘A simple and rapid strategy to construct laccase biosensor for determination of catechol was investigated. Magnetic multiwalled carbon nanotubes (MMCNT) which possess excellent capability of electron transfer were prepared by chemical coprecipitation method. Scanning electron microscope (SEM) and vibrating sample magnetometer (VSM) were used to identify its surfacetopography and magnetization, respectively. Laccase was immobilized on the MMCNT modified magnetic carbon paste electrode by the aid of chitosan/silica (CS) hybrid membrane. Using current-time detection method, the biosensor shows a linear response related to the concentration of catechol in the range from 10-7 to 0.165×10-3 mol/L. The corresponding detection limit is 3.34×10-8 mol/L based on signal-to-noise ratios (S/N) ≥3 under the optimized conditions. In addition, its response current retains 90% of the original after being stored for 45 d. The results indicate that this proposed strategy can be expected to develop other enzyme-based biosensors.