This paper proposes a modified iterative learning control(MILC)periodical feedback-feedforward algorithm to reduce the vibration of a rotor caused by coupled unbalance and parallel misalignment.The control of the vibr...This paper proposes a modified iterative learning control(MILC)periodical feedback-feedforward algorithm to reduce the vibration of a rotor caused by coupled unbalance and parallel misalignment.The control of the vibration of the rotor is provided by an active magnetic actuator(AMA).The iterative gain of the MILC algorithm here presented has a self-adjustment based on the magnitude of the vibration.Notch filters are adopted to extract the synchronous(1×Ω)and twice rotational frequency(2×Ω)components of the rotor vibration.Both the notch frequency of the filter and the size of feedforward storage used during the experiment have a real-time adaptation to the rotational speed.The method proposed in this work can provide effective suppression of the vibration of the rotor in case of sudden changes or fluctuations of the rotor speed.Simulations and experiments using the MILC algorithm proposed here are carried out and give evidence to the feasibility and robustness of the technique proposed.展开更多
Hard-magnetic soft materials have attracted broad interests because of their flexible programmability,non-contact activation and rapid response in various applications such as soft robotics,biomedical devices and flex...Hard-magnetic soft materials have attracted broad interests because of their flexible programmability,non-contact activation and rapid response in various applications such as soft robotics,biomedical devices and flexible electronics.Such multifunctional materials consist of a soft matrix embedded with hard-magnetic particles,and can exhibit large deformations under external magnetic stimuli.Here,we develop a three-dimensional(3D)rod model to predict spatial deformations(extension,bending and twist)of slender hard-magnetic elastica.The model follows Kirchhoff hypothesis and thus reduces the 3D magneto-elastic energy function to a one-dimensional(1D)form.Besides,the co-rotational formulation is applied to describe rigid body motion,and explicit time integration is adopted for the nonlinear resolution.Moreover,we explore finite bending,post-buckling and twisting of hard-magnetic elastica under external magnetic fields with different directions and amplitudes.Representative examples with various configurations show superior efficiency and accuracy of the model(the difference less than 1%with only a small number of elements)compared to conventional solid element.Our model could be used to guide rational designs on programmable shape morphing of ferromagnetic slender structures.展开更多
A ZW-126/D2000-40 type single-break vacuum circuit breaker(VCB)with controlled switching technology is designed and produced in this paper.The results of type tests based on IEC and GB standards are presented.A 126 kV...A ZW-126/D2000-40 type single-break vacuum circuit breaker(VCB)with controlled switching technology is designed and produced in this paper.The results of type tests based on IEC and GB standards are presented.A 126 kV singlebreak vacuum interrupter(VI)with 3/4 coil axial magnetic field(AMF)contacts is used in the VCB,which can interrupt short currents of 40 kA.The external insulation of the VI is provided by SF_(6) at 0.1 MPa.In order to match the 126 kV single-break VI and controlled switching device,a long-stroke electro-magnetic force actuator(EMFA)with 16 kN closing holding force and 3.5 m/s average opening speed is designed.Moreover,a position tracking controlled switching device based on closed-loop control using the technology of a fuzzy control algorithm and pulse width modulation is applied to the controlled switching device.This device is applied to control the coil current of EMFA and the electromagnetic force,so as to control the EMFA to follow the ideal position curve.The type tests of 126 kV VCB are all passed according to the IEC62271-100 and GB1984-2014,including dielectric tests,basic short-circuit tests,shortline fault tests,out-of-phase tests,etc.The strong capacitive current breaking capacity and mechanical strength of the VCB are proved by the capacitive current switching test of class C2,electrical endurance test of class E2 and mechanical endurance test of class M2.The electromagnetic compatibility(EMC)tests are passed according to the IEC61000-4.The controlled switching test of capacitive current was successful according to IEC62271-302 and GB/T30846-2014,and the controlled switching accuracy is less than±0.5 ms.The test results show that the VCB has excellent performance,which has broad application prospects in special occasions at a 126 kV voltage level,such as a switching capacitor and no-load transformer,etc.展开更多
基金Supported by National Natural Science Foundation of China(Grant Nos.51975037,52375075).
文摘This paper proposes a modified iterative learning control(MILC)periodical feedback-feedforward algorithm to reduce the vibration of a rotor caused by coupled unbalance and parallel misalignment.The control of the vibration of the rotor is provided by an active magnetic actuator(AMA).The iterative gain of the MILC algorithm here presented has a self-adjustment based on the magnitude of the vibration.Notch filters are adopted to extract the synchronous(1×Ω)and twice rotational frequency(2×Ω)components of the rotor vibration.Both the notch frequency of the filter and the size of feedforward storage used during the experiment have a real-time adaptation to the rotational speed.The method proposed in this work can provide effective suppression of the vibration of the rotor in case of sudden changes or fluctuations of the rotor speed.Simulations and experiments using the MILC algorithm proposed here are carried out and give evidence to the feasibility and robustness of the technique proposed.
基金This work was supported by the National Natural Science Foundation of China(Grants Nos.12122204,11872150,and 11890673)Shanghai Pilot Program for Basic Research-Fudan University(Grant No.21TQ1400100-21TQ010)+2 种基金Shanghai Shuguang Program(Grant No.21SG05)Shanghai Rising-Star Program(Grant No.19QA1400500)Young Scientist Project of Ministry of Education Innovation Platform.
文摘Hard-magnetic soft materials have attracted broad interests because of their flexible programmability,non-contact activation and rapid response in various applications such as soft robotics,biomedical devices and flexible electronics.Such multifunctional materials consist of a soft matrix embedded with hard-magnetic particles,and can exhibit large deformations under external magnetic stimuli.Here,we develop a three-dimensional(3D)rod model to predict spatial deformations(extension,bending and twist)of slender hard-magnetic elastica.The model follows Kirchhoff hypothesis and thus reduces the 3D magneto-elastic energy function to a one-dimensional(1D)form.Besides,the co-rotational formulation is applied to describe rigid body motion,and explicit time integration is adopted for the nonlinear resolution.Moreover,we explore finite bending,post-buckling and twisting of hard-magnetic elastica under external magnetic fields with different directions and amplitudes.Representative examples with various configurations show superior efficiency and accuracy of the model(the difference less than 1%with only a small number of elements)compared to conventional solid element.Our model could be used to guide rational designs on programmable shape morphing of ferromagnetic slender structures.
基金This work is supported by the National Natural Science Foundation of China(No.51877026 and No.51337001)the Science&Technology Project of SGCC(No.5229CG15003Q).
文摘A ZW-126/D2000-40 type single-break vacuum circuit breaker(VCB)with controlled switching technology is designed and produced in this paper.The results of type tests based on IEC and GB standards are presented.A 126 kV singlebreak vacuum interrupter(VI)with 3/4 coil axial magnetic field(AMF)contacts is used in the VCB,which can interrupt short currents of 40 kA.The external insulation of the VI is provided by SF_(6) at 0.1 MPa.In order to match the 126 kV single-break VI and controlled switching device,a long-stroke electro-magnetic force actuator(EMFA)with 16 kN closing holding force and 3.5 m/s average opening speed is designed.Moreover,a position tracking controlled switching device based on closed-loop control using the technology of a fuzzy control algorithm and pulse width modulation is applied to the controlled switching device.This device is applied to control the coil current of EMFA and the electromagnetic force,so as to control the EMFA to follow the ideal position curve.The type tests of 126 kV VCB are all passed according to the IEC62271-100 and GB1984-2014,including dielectric tests,basic short-circuit tests,shortline fault tests,out-of-phase tests,etc.The strong capacitive current breaking capacity and mechanical strength of the VCB are proved by the capacitive current switching test of class C2,electrical endurance test of class E2 and mechanical endurance test of class M2.The electromagnetic compatibility(EMC)tests are passed according to the IEC61000-4.The controlled switching test of capacitive current was successful according to IEC62271-302 and GB/T30846-2014,and the controlled switching accuracy is less than±0.5 ms.The test results show that the VCB has excellent performance,which has broad application prospects in special occasions at a 126 kV voltage level,such as a switching capacitor and no-load transformer,etc.