Sound dissimilar lap joints were achieved via ultrasonic spot welding (USW), which is a solid-state joining technique. The addition of Sn interlayer during USW effectively blocked the formation of brittle Al12Mg17 i...Sound dissimilar lap joints were achieved via ultrasonic spot welding (USW), which is a solid-state joining technique. The addition of Sn interlayer during USW effectively blocked the formation of brittle Al12Mg17 intermetallic compound in the Mg-Al dissimilar joints without interlayer, and led to the presence of a distinctive composite-like Sn and Mg2Sn eutectic structure in both Mg- Al and Mg-high strength low alloy (HSLA) steel joints. The lap shear strength of both types of dissimilar joints with a Sn interlayer was significantly higher than that of the corresponding dissimilar joints without interlayer. Failure during the tensile lap shear tests occurred mainly in the mode of cohesive failure in the Mg- Al dissimilar joints and in the mode of partial cohesive failure and partial nugget pull-out in the Mg-HSLA steel dissimilar joints.展开更多
Experiments were carried out to study the influence of surface condition on expulsion during the spot welding of AZ31B Mg alloy. A general electrical contact resistance theory for conductive rough surfaces and the rel...Experiments were carried out to study the influence of surface condition on expulsion during the spot welding of AZ31B Mg alloy. A general electrical contact resistance theory for conductive rough surfaces and the relation between maximum temperature Tm in the contact and voltage-drop V across interface of two surfaces were employed to understand the reason of expulsion in Mg alloy spot welding. The main reason of expulsion is that the high electrical contact resistance induced by large roughness of the surface and oxide film covered on the surface leads to local melting of metal in the interface of two surfaces, and liquid metal of the local area ejected from the specimen under electrode force forms expulsion.展开更多
A liquid-nitrogen-cooling friction stir spot welding(C-FSSW) technology was developed for welding AZ31 magnesium alloy sheets. The liquid-nitrogen cooling degraded the deformability of the welded materials such that t...A liquid-nitrogen-cooling friction stir spot welding(C-FSSW) technology was developed for welding AZ31 magnesium alloy sheets. The liquid-nitrogen cooling degraded the deformability of the welded materials such that the width of interfacial cracks increased with increasing cooling time. The grain size of the stirred zone(SZ) and the heat-affected zone(HAZ) of the C-FSSW-welded joints decreased, whereas that of the thermomechanically affected zone(TMAZ) increased with increasing cooling time. The maximum tensile shear load of the C-FSSW-welded joints welded with a cooling time of 5 or 7 s was larger than that of the friction stir spot welding(FSSW)-welded joint, and the tensile shear load decreased with increasing cooling time. The microhardness of the C-FSSW-welded joints was greater than that of the FSSW-welded joint. Moreover, the microhardness of the SZ and the HAZ of the C-FSSW-welded joints increased, whereas that of the TMAZ decreased, with increasing cooling time.展开更多
In this paper, resistance spot welding were performed on lmm-thickness magnesium AZ31B plates. The effect of welding current on the microstructure and tensile shear force was investigated. It was found that the weldin...In this paper, resistance spot welding were performed on lmm-thickness magnesium AZ31B plates. The effect of welding current on the microstructure and tensile shear force was investigated. It was found that the welding current governed the nugget growth, and the nugget could not form if current levels were insufficient. The nugget revealed a homogeneous, equiaxed, fine-grained structure, which consisted of non-equilibrium microstructure of α-phase dendrites surrounded by eutectic mixtures of α and β( Mg17All2 ) in the grain boundaries. With increasing welding current, the size of grains in nugget would be more smaller and uniform, and the width of plastic rings would be larger. Tensile shear tests showed that tensile shear force of the joints increased with increasing welding current when the welding current was smaller than 17 000 A. The maximum tensile shear force was up to 1980 N.展开更多
采用电阻点焊对MB3镁合金和镀锌钢板进行了焊接,研究了焊接电流对镁/钢接头宏观形貌、微观组织及力学性能的影响。试验结果表明:镁/钢点焊接头熔核直径及压下率随焊接电流增大而增大,接头拉剪载荷随电流增大呈先增大后减小的趋势。当...采用电阻点焊对MB3镁合金和镀锌钢板进行了焊接,研究了焊接电流对镁/钢接头宏观形貌、微观组织及力学性能的影响。试验结果表明:镁/钢点焊接头熔核直径及压下率随焊接电流增大而增大,接头拉剪载荷随电流增大呈先增大后减小的趋势。当焊接电流为13 k A,焊接时间为10周波,电极压力为5 k N时,接头拉剪力达到最大值6.1k N,此时点焊接头表现为纽扣式断裂。Fe与Al在镁/钢界面处发生反应生成Fe-Al化合物,其显微硬度达到146 HV。展开更多
基金supported by the Natural Sciences and Engineering Research Council of Canada (NSERC) and AUTO21 Network of Centers of Excellence for providing financial supportthe financial support by the Premier’s Research Excellence Award (PREA), NSERC-Discovery Accelerator Supplement (DAS) Award, Automotive Partnership Canada (APC), Canada Foundation for Innovation (CFI), and Ryerson Research Chair (RRC) program
文摘Sound dissimilar lap joints were achieved via ultrasonic spot welding (USW), which is a solid-state joining technique. The addition of Sn interlayer during USW effectively blocked the formation of brittle Al12Mg17 intermetallic compound in the Mg-Al dissimilar joints without interlayer, and led to the presence of a distinctive composite-like Sn and Mg2Sn eutectic structure in both Mg- Al and Mg-high strength low alloy (HSLA) steel joints. The lap shear strength of both types of dissimilar joints with a Sn interlayer was significantly higher than that of the corresponding dissimilar joints without interlayer. Failure during the tensile lap shear tests occurred mainly in the mode of cohesive failure in the Mg- Al dissimilar joints and in the mode of partial cohesive failure and partial nugget pull-out in the Mg-HSLA steel dissimilar joints.
文摘Experiments were carried out to study the influence of surface condition on expulsion during the spot welding of AZ31B Mg alloy. A general electrical contact resistance theory for conductive rough surfaces and the relation between maximum temperature Tm in the contact and voltage-drop V across interface of two surfaces were employed to understand the reason of expulsion in Mg alloy spot welding. The main reason of expulsion is that the high electrical contact resistance induced by large roughness of the surface and oxide film covered on the surface leads to local melting of metal in the interface of two surfaces, and liquid metal of the local area ejected from the specimen under electrode force forms expulsion.
基金financially supported by the National Natural Science Foundation of China (No.51375511)the Research Program of Basic Research and Frontier Technology of Chongqing of China (No.cstc2016jcyj A0167)+3 种基金the Science and Technology Project in the Field of Social Development of Shapingba District of Chongqing of China (No.SF201602)the Key Industry Technology Innovation Fund of Science and Technology Development Board of Xiangcheng District of Suzhou of China (No.XJ201608)the Science and Technology Project of Beibei District of Chongqing of China (No.2016-27)the Fundamental and Advanced Technology Research Funds of Chongqing (No.cstc2015jcyjBX0103)
文摘A liquid-nitrogen-cooling friction stir spot welding(C-FSSW) technology was developed for welding AZ31 magnesium alloy sheets. The liquid-nitrogen cooling degraded the deformability of the welded materials such that the width of interfacial cracks increased with increasing cooling time. The grain size of the stirred zone(SZ) and the heat-affected zone(HAZ) of the C-FSSW-welded joints decreased, whereas that of the thermomechanically affected zone(TMAZ) increased with increasing cooling time. The maximum tensile shear load of the C-FSSW-welded joints welded with a cooling time of 5 or 7 s was larger than that of the friction stir spot welding(FSSW)-welded joint, and the tensile shear load decreased with increasing cooling time. The microhardness of the C-FSSW-welded joints was greater than that of the FSSW-welded joint. Moreover, the microhardness of the SZ and the HAZ of the C-FSSW-welded joints increased, whereas that of the TMAZ decreased, with increasing cooling time.
文摘In this paper, resistance spot welding were performed on lmm-thickness magnesium AZ31B plates. The effect of welding current on the microstructure and tensile shear force was investigated. It was found that the welding current governed the nugget growth, and the nugget could not form if current levels were insufficient. The nugget revealed a homogeneous, equiaxed, fine-grained structure, which consisted of non-equilibrium microstructure of α-phase dendrites surrounded by eutectic mixtures of α and β( Mg17All2 ) in the grain boundaries. With increasing welding current, the size of grains in nugget would be more smaller and uniform, and the width of plastic rings would be larger. Tensile shear tests showed that tensile shear force of the joints increased with increasing welding current when the welding current was smaller than 17 000 A. The maximum tensile shear force was up to 1980 N.
文摘采用电阻点焊对MB3镁合金和镀锌钢板进行了焊接,研究了焊接电流对镁/钢接头宏观形貌、微观组织及力学性能的影响。试验结果表明:镁/钢点焊接头熔核直径及压下率随焊接电流增大而增大,接头拉剪载荷随电流增大呈先增大后减小的趋势。当焊接电流为13 k A,焊接时间为10周波,电极压力为5 k N时,接头拉剪力达到最大值6.1k N,此时点焊接头表现为纽扣式断裂。Fe与Al在镁/钢界面处发生反应生成Fe-Al化合物,其显微硬度达到146 HV。