期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于双注意力模型和迁移学习的Apex帧微表情识别 被引量:4
1
作者 徐玮 郑豪 杨种学 《智能系统学报》 CSCD 北大核心 2021年第6期1015-1020,共6页
微表情具有持续时间短、强度低的特点,其识别准确率普遍不高。针对该问题提出了一种改进的深度学习识别方法,该方法取微表情视频序列中的Apex帧,采用集成空间、通道双注意力模块的ResNet18网络,引入Focal Loss函数解决微表情数据样本不... 微表情具有持续时间短、强度低的特点,其识别准确率普遍不高。针对该问题提出了一种改进的深度学习识别方法,该方法取微表情视频序列中的Apex帧,采用集成空间、通道双注意力模块的ResNet18网络,引入Focal Loss函数解决微表情数据样本不平衡的问题,并将宏表情识别领域的先验知识迁移到微表情识别领域,以提高识别效果。在CASME II微表情数据集上使用"留一交叉验证法"进行实验,结果表明本文方法相比一些现有的方法识别准确率及F_(1)值更高。 展开更多
关键词 微表情识别 深度学习 Apex帧 双注意力模型 ResNet18网络 Focal Loss函数 宏表情 迁移学习
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部