In this paper, we present a new support vector machines-least squares support vector machines (LS-SVMs). While standard SVMs solutions involve solving quadratic or linear programming problems, the least squaresversion...In this paper, we present a new support vector machines-least squares support vector machines (LS-SVMs). While standard SVMs solutions involve solving quadratic or linear programming problems, the least squaresversion of SVMs corresponds to solving a set of linear equations, due to equality instead of inequality constraints inthe problem formulation. In LS-SVMs, Mercer condition is still applicable. Hence several type of kernels such aspolynomial, RBF's and MLP's can be used. Here we use LS-SVMs to time series prediction compared to radial basisfunction neural networks. We consider a noisy (Gaussian and uniform noise)Mackey-Glass time series. The resultsshow that least squares support vector machines is excellent for time series prediction even with high noise.展开更多
Based on discussion on the theories of support vector machines (SVM), an one-step prediction model for time series prediction is presented, wherein the chaos theory is incorporated. Chaotic character of the time ser...Based on discussion on the theories of support vector machines (SVM), an one-step prediction model for time series prediction is presented, wherein the chaos theory is incorporated. Chaotic character of the time series is taken into account in the prediction procedure; parameters of reconstruction-detay and embedding-dimension for phase-space reconstruction are calculated in light of mutual-information and false-nearest-neighbor method, respectively. Precision and functionality have been demonstrated by the experimental results on the basis of the prediction of Lorenz chaotic time series.展开更多
Support vector machines (SVM) have been widely used in chaotic time series predictions in recent years. In order to enhance the prediction efficiency of this method and implement it in hardware, the sigmoid kernel i...Support vector machines (SVM) have been widely used in chaotic time series predictions in recent years. In order to enhance the prediction efficiency of this method and implement it in hardware, the sigmoid kernel in SVM is drawn in a more natural way by using the fuzzy logic method proposed in this paper. This method provides easy hardware implementation and straightforward interpretability. Experiments on two typical chaotic time series predictions have been carried out and the obtained results show that the average CPU time can be reduced significantly at the cost of a small decrease in prediction accuracy, which is favourable for the hardware implementation for chaotic time series prediction.展开更多
文摘In this paper, we present a new support vector machines-least squares support vector machines (LS-SVMs). While standard SVMs solutions involve solving quadratic or linear programming problems, the least squaresversion of SVMs corresponds to solving a set of linear equations, due to equality instead of inequality constraints inthe problem formulation. In LS-SVMs, Mercer condition is still applicable. Hence several type of kernels such aspolynomial, RBF's and MLP's can be used. Here we use LS-SVMs to time series prediction compared to radial basisfunction neural networks. We consider a noisy (Gaussian and uniform noise)Mackey-Glass time series. The resultsshow that least squares support vector machines is excellent for time series prediction even with high noise.
文摘Based on discussion on the theories of support vector machines (SVM), an one-step prediction model for time series prediction is presented, wherein the chaos theory is incorporated. Chaotic character of the time series is taken into account in the prediction procedure; parameters of reconstruction-detay and embedding-dimension for phase-space reconstruction are calculated in light of mutual-information and false-nearest-neighbor method, respectively. Precision and functionality have been demonstrated by the experimental results on the basis of the prediction of Lorenz chaotic time series.
文摘Support vector machines (SVM) have been widely used in chaotic time series predictions in recent years. In order to enhance the prediction efficiency of this method and implement it in hardware, the sigmoid kernel in SVM is drawn in a more natural way by using the fuzzy logic method proposed in this paper. This method provides easy hardware implementation and straightforward interpretability. Experiments on two typical chaotic time series predictions have been carried out and the obtained results show that the average CPU time can be reduced significantly at the cost of a small decrease in prediction accuracy, which is favourable for the hardware implementation for chaotic time series prediction.