The interaction between the machining process and the machine tool (IMPMT) plays an important role on high precision components manufacturing. However, most researches are focused on the machining process or the mac...The interaction between the machining process and the machine tool (IMPMT) plays an important role on high precision components manufacturing. However, most researches are focused on the machining process or the machine tool separately, and the interaction between them has been always overlooked. In this paper, a novel simplified method is proposed to realize the simulation of IMPMT by combining use the finite element method and state space method. In this method, the transfer function of the machine tool is built as a small state space. The small state space is obtained from the complicated finite element model of the whole machine tool. Furthermore, the control system of the machine tool is integrated with the transfer function of the machine tool to generate the cutting trajectory. Then, the tool tip response under the cutting force is used to predict the machined surface. Finally, a case study is carried out for a fly-cutting machining process, the dynamic response analysis of an ultra-precision fly-cutting machine tool and the machined surface verifies the effectiveness of this method. This research proposes a simplified method to study the IMPMT, the relationships between the machining process and the machine tool are established and the surface generation is obtained.展开更多
Precise control of machining deformation is crucial for improving the manufacturing quality of structural aerospace components.In the machining process,different batches of blanks have different residual stress distri...Precise control of machining deformation is crucial for improving the manufacturing quality of structural aerospace components.In the machining process,different batches of blanks have different residual stress distributions,which pose a significant challenge to machining deformation control.In this study,a reinforcement learning method for machining deformation control based on a meta-invariant feature space was developed.The proposed method uses a reinforcement-learning model to dynamically control the machining process by monitoring the deformation force.Moreover,combined with a meta-invariant feature space,the proposed method learns the internal relationship of the deformation control approaches under different stress distributions to achieve the machining deformation control of different batches of blanks.Finally,the experimental results show that the proposed method achieves better deformation control than the two existing benchmarking methods.展开更多
During five-axis machining of impeller, the excessive local interference avoidance leads to inconsistency of cutter posture, low quality of machined surface and increase of processing time. Therefore, in order to impr...During five-axis machining of impeller, the excessive local interference avoidance leads to inconsistency of cutter posture, low quality of machined surface and increase of processing time. Therefore, in order to improve the efficiency of five-axis machining of impellers, it is necessary to minimize the cutter posture changes and create a continuous tool path while avoiding interference. By using an MC-space algorithm for interference avoidance, an MB-spline algorithm for continuous control was intended to create a five-axis machining tool path with excellent surface quality and economic feasibility. A five-axis cutting experiment was performed to verify the effectiveness of the continuity control. The result shows that the surface shape with continuous method is greatly improved, and the surface roughness is generally favorable. Consequently, the effectiveness of the suggested method is verified by identifying the improvement of efficiency of five-axis machining of an impeller in aspects of surface quality and machining time.展开更多
基金Supported by National Natural Science Foundation of China(Grant No.51505107)Natural Scientific Research Innovation Foundation in Harbin Institute of Technology of China(Grant No.HIT.NSRIF.2017029)
文摘The interaction between the machining process and the machine tool (IMPMT) plays an important role on high precision components manufacturing. However, most researches are focused on the machining process or the machine tool separately, and the interaction between them has been always overlooked. In this paper, a novel simplified method is proposed to realize the simulation of IMPMT by combining use the finite element method and state space method. In this method, the transfer function of the machine tool is built as a small state space. The small state space is obtained from the complicated finite element model of the whole machine tool. Furthermore, the control system of the machine tool is integrated with the transfer function of the machine tool to generate the cutting trajectory. Then, the tool tip response under the cutting force is used to predict the machined surface. Finally, a case study is carried out for a fly-cutting machining process, the dynamic response analysis of an ultra-precision fly-cutting machine tool and the machined surface verifies the effectiveness of this method. This research proposes a simplified method to study the IMPMT, the relationships between the machining process and the machine tool are established and the surface generation is obtained.
基金This work is supported by National Key R&D Programs of China,No.2021YFB3301302the National Natural Science Foundation of China,No.52175467the National Science Fund of China for Distinguished Young Scholars,No.51925505。
文摘Precise control of machining deformation is crucial for improving the manufacturing quality of structural aerospace components.In the machining process,different batches of blanks have different residual stress distributions,which pose a significant challenge to machining deformation control.In this study,a reinforcement learning method for machining deformation control based on a meta-invariant feature space was developed.The proposed method uses a reinforcement-learning model to dynamically control the machining process by monitoring the deformation force.Moreover,combined with a meta-invariant feature space,the proposed method learns the internal relationship of the deformation control approaches under different stress distributions to achieve the machining deformation control of different batches of blanks.Finally,the experimental results show that the proposed method achieves better deformation control than the two existing benchmarking methods.
基金Work supported by the Second Stage of Brain Korea 21 ProjectsProject(RTI04-01-03) supported by the Regional Technology Innovation Program of the Ministry of Knowledge Economy (MKE) of Korea
文摘During five-axis machining of impeller, the excessive local interference avoidance leads to inconsistency of cutter posture, low quality of machined surface and increase of processing time. Therefore, in order to improve the efficiency of five-axis machining of impellers, it is necessary to minimize the cutter posture changes and create a continuous tool path while avoiding interference. By using an MC-space algorithm for interference avoidance, an MB-spline algorithm for continuous control was intended to create a five-axis machining tool path with excellent surface quality and economic feasibility. A five-axis cutting experiment was performed to verify the effectiveness of the continuity control. The result shows that the surface shape with continuous method is greatly improved, and the surface roughness is generally favorable. Consequently, the effectiveness of the suggested method is verified by identifying the improvement of efficiency of five-axis machining of an impeller in aspects of surface quality and machining time.