期刊文献+
共找到348篇文章
< 1 2 18 >
每页显示 20 50 100
基于ACO-LSSVM的网络流量预测 被引量:12
1
作者 田海梅 黄楠 《计算机工程与应用》 CSCD 2014年第1期91-95,共5页
为了提高了网络流量的预测精度,提出一种蚁群算法(ACO)优化最小二乘支持向量机(LSSVM)参数的网络流量预测算法(ACO-LSSVM)。将LSSVM算法参数作为蚂蚁的位置向量,采用动态随机抽取的方法来确定目标个体引导蚁群进行全局搜索,并在最优蚂... 为了提高了网络流量的预测精度,提出一种蚁群算法(ACO)优化最小二乘支持向量机(LSSVM)参数的网络流量预测算法(ACO-LSSVM)。将LSSVM算法参数作为蚂蚁的位置向量,采用动态随机抽取的方法来确定目标个体引导蚁群进行全局搜索,并在最优蚂蚁邻域内进行小步长局部搜索,找到算法的最优参数,建立了基于ACO-LSSVM的网络流量预测模型。仿真结果表明,相对其他网络流量预测算法,ACO-LSSVM算法提高了网络流量预测精度,更能准确地描述网络流量变化规律。 展开更多
关键词 网络流量 蚁群优化算法 最小二乘支持向量机 预测 Least SQUARE Support Vector machine(lssvm)
下载PDF
Machine learning approach for estimating the human-related VOC emissions in a university classroom 被引量:2
2
作者 Jialong Liu Rui Zhang Jianyin Xiong 《Building Simulation》 SCIE EI CSCD 2023年第6期915-925,共11页
Indoor air quality becomes increasingly important,partly because the COVID-19 pandemic increases the time people spend indoors.Research into the prediction of indoor volatile organic compounds(VOCs)is traditionally co... Indoor air quality becomes increasingly important,partly because the COVID-19 pandemic increases the time people spend indoors.Research into the prediction of indoor volatile organic compounds(VOCs)is traditionally confined to building materials and furniture.Relatively little research focuses on estimation of human-related VOCs,which have been shown to contribute significantly to indoor air quality,especially in densely-occupied environments.This study applies a machine learning approach to accurately estimate the human-related VOC emissions in a university classroom.The time-resolved concentrations of two typical human-related(ozone-related)VOCs in the classroom over a five-day period were analyzed,i.e.,6-methyl-5-hepten-2-one(6-MHO),4-oxopentanal(4-OPA).By comparing the results for 6-MHO concentration predicted via five machine learning approaches including the random forest regression(RFR),adaptive boosting(Adaboost),gradient boosting regression tree(GBRT),extreme gradient boosting(XGboost),and least squares support vector machine(LSSVM),we find that the LSSVM approach achieves the best performance,by using multi-feature parameters(number of occupants,ozone concentration,temperature,relative humidity)as the input.The LSSVM approach is then used to predict the 4-OPA concentration,with mean absolute percentage error(MAPE)less than 5%,indicating high accuracy.By combining the LSSVM with a kernel density estimation(KDE)method,we further establish an interval prediction model,which can provide uncertainty information and viable option for decision-makers.The machine learning approach in this study can easily incorporate the impact of various factors on VOC emission behaviors,making it especially suitable for concentration prediction and exposure assessment in realistic indoor settings. 展开更多
关键词 indoor air quality human-related VOCs machine learning interval prediction least squares support vector machine(lssvm) kernel density estimation(KDE)
原文传递
Improved AVOA based on LSSVM for wind power prediction
3
作者 ZHANG Zhonglin WEI Fan +1 位作者 YAN Guanghui MA Haiyun 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2024年第3期344-359,共16页
Improving the prediction accuracy of wind power is an effective means to reduce the impact of wind power on power grid.Therefore,we proposed an improved African vulture optimization algorithm(AVOA)to realize the predi... Improving the prediction accuracy of wind power is an effective means to reduce the impact of wind power on power grid.Therefore,we proposed an improved African vulture optimization algorithm(AVOA)to realize the prediction model of multi-objective optimization least squares support vector machine(LSSVM).Firstly,the original wind power time series was decomposed into a certain number of intrinsic modal components(IMFs)using variational modal decomposition(VMD).Secondly,random numbers in population initialization were replaced by Tent chaotic mapping,multi-objective LSSVM optimization was introduced by AVOA improved by elitist non-dominated sorting and crowding operator,and then each component was predicted.Finally,Tent multi-objective AVOA-LSSVM(TMOALSSVM)method was used to sum each component to obtain the final prediction result.The simulation results show that the improved AVOA based on Tent chaotic mapping,the improved non-dominated sorting algorithm with elite strategy,and the improved crowding operator are the optimal models for single-objective and multi-objective prediction.Among them,TMOALSSVM model has the smallest average error of stroke power values in four seasons,which are 0.0694,0.0545 and 0.0211,respectively.The average value of DS statistics in the four seasons is 0.9902,and the statistical value is the largest.The proposed model effectively predicts four seasons of wind power values on lateral and longitudinal precision,and faster and more accurately finds the optimal solution on the current solution space sets,which proves that the method has a certain scientific significance in the development of wind power prediction technology. 展开更多
关键词 African vulture optimization algorithm(AVOA) least squares support vector machine(lssvm) variational mode decomposition(VMD) multi-objective prediction wind power
下载PDF
Forecasting and optimal probabilistic scheduling of surplus gas systems in iron and steel industry 被引量:5
4
作者 李磊 李红娟 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第4期1437-1447,共11页
To make full use of the gas resource, stabilize the pipe network pressure, and obtain higher economic benefits in the iron and steel industry, the surplus gas prediction and scheduling models were proposed. Before app... To make full use of the gas resource, stabilize the pipe network pressure, and obtain higher economic benefits in the iron and steel industry, the surplus gas prediction and scheduling models were proposed. Before applying the forecasting techniques, a support vector classifier was first used to classify the data, and then the filtering was used to create separate trend and volatility sequences. After forecasting, the Markov chain transition probability matrix was introduced to adjust the residual. Simulation results using surplus gas data from an iron and steel enterprise demonstrate that the constructed SVC-HP-ENN-LSSVM-MC prediction model prediction is accurate, and that the classification accuracy is high under different conditions. Based on this, the scheduling model was constructed for surplus gas operating, and it has been used to investigate the comprehensive measures for managing the operational probabilistic risk and optimize the economic benefit at various working conditions and implementations. It has extended the concepts of traditional surplus gas dispatching systems, and provides a method for enterprises to determine optimal schedules. 展开更多
关键词 surplus gas prediction probabilistic scheduling iron and steel enterprise HP filter Elman neural network(ENN) least squares support vector machinelssvm Markov chain
下载PDF
Regressive approach for predicting bearing capacity of bored piles from cone penetration test data 被引量:3
5
作者 Iyad S. Alkroosh Mohammad Bahadori +1 位作者 Hamid Nikraz Alireza Bahadori 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2015年第5期584-592,共9页
In this study, th e least sq u are su p p o rt v ecto r m achine (LSSVM) alg o rith m w as applied to predicting th ebearing capacity o f b ored piles e m b ed d ed in sand an d m ixed soils. Pile g eo m etry an d c... In this study, th e least sq u are su p p o rt v ecto r m achine (LSSVM) alg o rith m w as applied to predicting th ebearing capacity o f b ored piles e m b ed d ed in sand an d m ixed soils. Pile g eo m etry an d cone p e n e tra tio nte s t (CPT) resu lts w ere used as in p u t variables for pred ictio n o f pile bearin g capacity. The d ata u se d w erecollected from th e existing litera tu re an d consisted o f 50 case records. The application o f LSSVM w ascarried o u t by dividing th e d ata into th re e se ts: a train in g se t for learning th e pro b lem an d obtain in g arelationship b e tw e e n in p u t variables an d pile bearin g capacity, and testin g an d validation sets forevaluation o f th e predictive an d g en eralization ability o f th e o b tain ed relationship. The predictions o f pilebearing capacity by LSSVM w ere evaluated by com paring w ith ex p erim en tal d ata an d w ith th o se bytrad itio n al CPT-based m eth o d s and th e gene ex pression pro g ram m in g (GEP) m odel. It w as found th a t th eLSSVM perform s w ell w ith coefficient o f d eterm in atio n , m ean, an d sta n d ard dev iatio n equivalent to 0.99,1.03, an d 0.08, respectively, for th e testin g set, an d 1, 1.04, an d 0.11, respectively, for th e v alidation set. Thelow values o f th e calculated m ean squared e rro r an d m ean ab so lu te e rro r indicated th a t th e LSSVM w asaccurate in p redicting th e pile bearing capacity. The results o f com parison also show ed th a t th e p roposedalg o rith m p red icted th e pile bearin g capacity m ore accurately th a n th e trad itio n al m eth o d s including th eGEP m odel. 展开更多
关键词 Bored piles Cone penetration test(CPT) Bearing capacity Least square support vector machine(lssvm) TRAINING VALIDATION
下载PDF
Analysis of Epimetamorphic Rock Slopes Using Soft Computing
6
作者 KUMAR Manoj SAMUI Pijush 《Journal of Shanghai Jiaotong university(Science)》 EI 2014年第3期274-278,共5页
This article adopts three soft computing techniques including support vector machine(SVM), least square support vector machine(LSSVM) and relevance vector machine(RVM) for prediction of status of epimetemorphic rock s... This article adopts three soft computing techniques including support vector machine(SVM), least square support vector machine(LSSVM) and relevance vector machine(RVM) for prediction of status of epimetemorphic rock slope. The input variables of SVM, LSSVM and RVM are bulk density, height, inclination, cohesion and internal friction angle. There are 53 datasets which have been used to develop the SVM, LSSVM and RVM models. The developed SVM, LSSVM and RVM give equations for prediction of status of epimetemorphic rock slope. The performance of SVM, LSSVM and RVM is 100%. A comparative study has been presented between the developed SVM, LSSVM and RVM. The results confirm that the developed SVM, LSSVM and RVM are effective tools for prediction of status of epimetemorphic rock slope. 展开更多
关键词 epimetemorphic rock slope PROBABILITY support vector machine(SVM) least square support vector machine(lssvm) relevance vector machine(RVM)
原文传递
Applying ANN,ANFIS and LSSVM Models for Estimation of Acid Solvent Solubility in Supercritical CO_(2) 被引量:2
7
作者 Amin Bemani Alireza Baghban +3 位作者 Shahaboddin Shamshirband Amir Mosavi Peter Csiba Annamaria R.Varkonyi-Koczy 《Computers, Materials & Continua》 SCIE EI 2020年第6期1175-1204,共30页
In the present work,a novel machine learning computational investigation is carried out to accurately predict the solubility of different acids in supercritical carbon dioxide.Four different machine learning algorithm... In the present work,a novel machine learning computational investigation is carried out to accurately predict the solubility of different acids in supercritical carbon dioxide.Four different machine learning algorithms of radial basis function,multi-layer perceptron(MLP),artificial neural networks(ANN),least squares support vector machine(LSSVM)and adaptive neuro-fuzzy inference system(ANFIS)are used to model the solubility of different acids in carbon dioxide based on the temperature,pressure,hydrogen number,carbon number,molecular weight,and the dissociation constant of acid.To evaluate the proposed models,different graphical and statistical analyses,along with novel sensitivity analysis,are carried out.The present study proposes an efficient tool for acid solubility estimation in supercritical carbon dioxide,which can be highly beneficial for engineers and chemists to predict operational conditions in industries. 展开更多
关键词 Supercritical carbon dioxide machine learning ACID artificial intelligence SOLUBILITY artificial neural networks(ANN) adaptive neuro-fuzzy inference system(ANFIS) least-squares support vector machine(lssvm) multilayer perceptron(MLP)
下载PDF
Natural disaster warning system for safe operation of a high-speed railway 被引量:2
8
作者 Hu Qizhou Fang Xin Bian Lishuang 《Transportation Safety and Environment》 EI 2021年第4期34-45,共12页
In this paper,the least square support vector machine(LSSVM)is used to study the safety of a high-speed railway.According to the principle of LSSVM regression prediction,the parameters of the LSSVM are optimized to mo... In this paper,the least square support vector machine(LSSVM)is used to study the safety of a high-speed railway.According to the principle of LSSVM regression prediction,the parameters of the LSSVM are optimized to model the natural disaster early warning of safe operation of a high-speed railway,and the management measures and methods of high-speed railway safety operation under natural disasters are given.The relevant statistical data of China’s high-speed railway are used for training and verification.The experimental results show that the LSSVM can well reflect the nonlinear relationship between the accident rate and the influencing factors,with high simulation accuracy and strong generalization ability,and can effectively predict the natural disasters in the safe operation of a high-speed railway.Moreover,the early warning system can improve the ability of safety operation evaluation and early warning of high-speed railway under natural disasters,realize the development goals of high-speed railway(safety,speed,economic,low-carbon and environmental protection)and provide a theoretical basis and technical support for improving the safety of a high-speed railway. 展开更多
关键词 high-speed railway safe operation natural disaster early warning system least square support vector machine(lssvm)
原文传递
Highway Cost Prediction Based on LSSVM Optimized by Intial Parameters 被引量:2
9
作者 Xueqing Wang Shuang Liu Lejun Zhang 《Computer Systems Science & Engineering》 SCIE EI 2021年第1期259-269,共11页
The cost of highway is affected by many factors.Its composition and calculation are complicated and have great ambiguity.Calculating the cost of highway according to the traditional highway engineering estimation meth... The cost of highway is affected by many factors.Its composition and calculation are complicated and have great ambiguity.Calculating the cost of highway according to the traditional highway engineering estimation method is a completely tedious task.Constructing a highway cost prediction model can forecast the value promptly and improve the accuracy of highway engineering cost.This work sorts out and collects 60 sets of measured data of highway engineering;establishes an expressway cost index system based on 10 factors,including main route mileage,roadbed width,roadbed earthwork,and number of bridges;and processes the data through principal component analysis(PCA)and hierarchical cluster analysis.Particle swarm optimization(PSO)is used to obtain the optimal parameter combination of the regularization parameter c and the kernel function width coefficientin least squares support vector machine(LSSVM).Results show that the average relative and mean square errors of the PCA-PSO-LSSVM model are 0.79%and 10.01%,respectively.Compared with BP neural networks and unoptimized LSSVM model,the PCA-PSO-LSSVM model has smaller relative errors,better generalization ability,and higher prediction accuracy,thereby providing a new method for highway cost prediction in complex environments. 展开更多
关键词 HIGHWAY least squares support vector machine(lssvm) particle swarm optimization(PSO) principal component analysis(PCA) hierarchical cluster analysis
下载PDF
Seasonal Least Squares Support Vector Machine with Fruit Fly Optimization Algorithm in Electricity Consumption Forecasting
10
作者 WANG Zilong XIA Chenxia 《Journal of Donghua University(English Edition)》 EI CAS 2019年第1期67-76,共10页
Electricity is the guarantee of economic development and daily life. Thus, accurate monthly electricity consumption forecasting can provide reliable guidance for power construction planning. In this paper, a hybrid mo... Electricity is the guarantee of economic development and daily life. Thus, accurate monthly electricity consumption forecasting can provide reliable guidance for power construction planning. In this paper, a hybrid model in combination of least squares support vector machine(LSSVM) model with fruit fly optimization algorithm(FOA) and the seasonal index adjustment is constructed to predict monthly electricity consumption. The monthly electricity consumption demonstrates a nonlinear characteristic and seasonal tendency. The LSSVM has a good fit for nonlinear data, so it has been widely applied to handling nonlinear time series prediction. However, there is no unified selection method for key parameters and no unified method to deal with the effect of seasonal tendency. Therefore, the FOA was hybridized with the LSSVM and the seasonal index adjustment to solve this problem. In order to evaluate the forecasting performance of hybrid model, two samples of monthly electricity consumption of China and the United States were employed, besides several different models were applied to forecast the two empirical time series. The results of the two samples all show that, for seasonal data, the adjusted model with seasonal indexes has better forecasting performance. The forecasting performance is better than the models without seasonal indexes. The fruit fly optimized LSSVM model outperforms other alternative models. In other words, the proposed hybrid model is a feasible method for the electricity consumption forecasting. 展开更多
关键词 forecasting FRUIT FLY optimization algorithm(FOA) least SQUARES support vector machine(lssvm) SEASONAL index
下载PDF
改进LSSVM迁移学习方法的轴承故障诊断 被引量:77
11
作者 陈超 沈飞 严如强 《仪器仪表学报》 EI CAS CSCD 北大核心 2017年第1期33-40,共8页
机械系统存在的外部环境干扰、变工况条件以及无法直接测量等因素,导致获取的数据常常不满足传统机器学习的两个前提:训练与测试数据分布相同以及目标诊断数据量充足,从而影响诊断模型的泛化能力。针对上述问题,提出一种基于辅助数据的... 机械系统存在的外部环境干扰、变工况条件以及无法直接测量等因素,导致获取的数据常常不满足传统机器学习的两个前提:训练与测试数据分布相同以及目标诊断数据量充足,从而影响诊断模型的泛化能力。针对上述问题,提出一种基于辅助数据的增强型最小二乘支持向量机(LSSVM)迁移学习策略,用于数据量不足时的轴承故障诊断。其中利用递归定量分析(RQA)提取非线性特征并与传统时域特征相结合以提高诊断精度。诊断分类器通过改进传统LSSVM模型,在原目标函数和约束条件中分别增加辅助集的惩罚函数和约束条件,最终得到加入辅助集的函数估计,从而将该算法推广至迁移学习。此外,类内类间距离指标用于描述特征区分性,并提出4种辅助数据集的使用方法,从而构建迁移学习为框架的诊断模型。球形轴承的振动信号试验结果表明,相比传统机器学习,在目标振动数据较少条件下所提模型在轴承故障诊断时性能提升显著。 展开更多
关键词 轴承故障诊断 递归定量分析 迁移学习 最小二乘支持向量机
下载PDF
基于改进最小二乘支持向量机和预测误差校正的短期风电负荷预测 被引量:75
12
作者 李霄 王昕 +3 位作者 郑益慧 李立学 生西奎 吴昊 《电力系统保护与控制》 EI CSCD 北大核心 2015年第11期63-69,共7页
为了提高风电负荷预测精度,保证风电场资源得到有效利用,提出了基于改进最小二乘支持向量机和预测误差校正相结合的方法。首先引入提升小波分解原始数据,可以有效提取其主要特征,从而克服风电场的随机性。然后采用最小二乘支持向量机对... 为了提高风电负荷预测精度,保证风电场资源得到有效利用,提出了基于改进最小二乘支持向量机和预测误差校正相结合的方法。首先引入提升小波分解原始数据,可以有效提取其主要特征,从而克服风电场的随机性。然后采用最小二乘支持向量机对分解后的信号做预测,保证了预测精度。接着用误差校正方式修正预测结果,减少了较大误差点的出现,提高了预测结果的稳定性。最后,通过某风电场预测结果表明,基于提升小波和最小二乘支持向量机的方法可以提高预测的精度,误差预测的方法也可以有效地校正预测结果。仿真结果验证了该方法用于风电负荷预测是有效可行的。 展开更多
关键词 提升小波 最小二乘支持向量机 误差预测 风电负荷预测
下载PDF
小时间尺度网络流量混沌性分析及趋势预测 被引量:44
13
作者 温祥西 孟相如 +1 位作者 马志强 张永春 《电子学报》 EI CAS CSCD 北大核心 2012年第8期1609-1616,共8页
小时间尺度的网络流量的混沌性被噪声掩盖难以预测,本文通过局部投影降噪得到可预测的混沌性流量趋势.针对网络流量存在的时变性和长周期性,提出一种最优样本子集在线模糊最小二乘支持向量机(Least SquaresSupport VectorMachine,LSSVM... 小时间尺度的网络流量的混沌性被噪声掩盖难以预测,本文通过局部投影降噪得到可预测的混沌性流量趋势.针对网络流量存在的时变性和长周期性,提出一种最优样本子集在线模糊最小二乘支持向量机(Least SquaresSupport VectorMachine,LSSVM)预测方法:以与预测样本时间上以及欧式距离最近的样本点构成最优样本子集,并对其模糊化处理,最后采用模糊LSSVM训练获得预测模型.通过分块矩阵降低预测模型在线更新的运算复杂度.对真实网络流量的降噪以及预测的结果表明本文方法能够快速准确的预测网络流量趋势. 展开更多
关键词 网络流量 趋势预测 混沌理论 最优样本子集 最小二乘支持向量机
下载PDF
中长期负荷预测的异常数据辨识与缺失数据处理 被引量:43
14
作者 毛李帆 姚建刚 +3 位作者 金永顺 李文杰 关石磊 陈芳 《电网技术》 EI CSCD 北大核心 2010年第7期148-153,共6页
负荷历史数据是进行中长期负荷预测的基础。历史数据异常及缺失将严重影响负荷预测模型的精度及有效性。针对传统异常数据辨识方法和缺失数据填补方法的不足,提出了基于T2椭圆图的异常数据识别和基于最小二乘支持向量机(least square su... 负荷历史数据是进行中长期负荷预测的基础。历史数据异常及缺失将严重影响负荷预测模型的精度及有效性。针对传统异常数据辨识方法和缺失数据填补方法的不足,提出了基于T2椭圆图的异常数据识别和基于最小二乘支持向量机(least square support vector machine,LSSVM)的缺失数据填补方法。采用偏最小二乘法(partial least square,PLS)提取历史数据主成份,计算各历史样本对主成份的累积贡献率(accumulative contribution rate,ACR),并绘制T2椭圆,从而识别出历史样本贡献率过大的异常数据。用最小二乘支持向量机拟合历史数据变化趋势,从而实现缺失数据的填补。算例结果表明:T2椭圆图能有效识别历史数据中的异常样本;最小二乘支持向量机具有良好的数据填补特性,具有较强的实用价值。 展开更多
关键词 数据异常 数据缺失 累积贡献率 T^2椭圆 最小二乘支持向量机 负荷预测
下载PDF
基于EMD-LSSVM的光伏发电系统功率预测方法研究 被引量:39
15
作者 阳霜 罗滇生 +2 位作者 何洪英 阳经伟 胡时雨 《太阳能学报》 EI CAS CSCD 北大核心 2016年第6期1387-1395,共9页
考虑到光伏发电系统输出功率特性,提出一种将经验分解法(EMD)与最小二乘支持向量机(LSSVM)相结合的方法对光伏发电系统功率进行预测。首先将历史数据按天气类型分类,利用欧氏距离挑选出待预测日的相似日数据;然后运用EMD将原始光伏发电... 考虑到光伏发电系统输出功率特性,提出一种将经验分解法(EMD)与最小二乘支持向量机(LSSVM)相结合的方法对光伏发电系统功率进行预测。首先将历史数据按天气类型分类,利用欧氏距离挑选出待预测日的相似日数据;然后运用EMD将原始光伏发电系统功率序列分解为不同频率的相对平稳的IMF分量,将信号中存在的不同尺度波动或趋势逐级分解出来;最后对各IMF的每一时刻分别建立LSSVM预测模型,将各分量对应时刻的预测值等权值求和得到该时刻最终的光伏发电量。仿真预测结果表明,该方法与单一的LSSVM预测法及小波分解与LSSVM相结合预测法相比,预测精度得到大幅度的提高。 展开更多
关键词 光伏发电系统功率预测 经验模式分解(EMD) 最小二乘支持向量机(lssvm) 欧氏距离 相似日
下载PDF
基于灰色关联度与LSSVM组合的月度负荷预测 被引量:40
16
作者 刘文颖 门德月 +1 位作者 梁纪峰 王维洲 《电网技术》 EI CSCD 北大核心 2012年第8期228-232,共5页
由于月度负荷的二重趋势特性,其变化呈现出复杂的非线性组合特征,使预测精度一直不能达到令人满意的结果。针对月负荷的二重趋势特性和最小二乘支持向量机(least squares support vector machine,LSSVM)存在的数据输入维数大、训练时间... 由于月度负荷的二重趋势特性,其变化呈现出复杂的非线性组合特征,使预测精度一直不能达到令人满意的结果。针对月负荷的二重趋势特性和最小二乘支持向量机(least squares support vector machine,LSSVM)存在的数据输入维数大、训练时间长等缺点,提出一种基于灰色关联度与LSSVM组合的月度负荷预测方法。该方法通过计算灰色关联度来选择训练样本,选取LSSVM进行样本训练;将与待预测月高度相似的历史月负荷作为LSSVM的训练样本输入,剔除了冗余数据,减少了输入维数,提高了预测精度。通过实例验证和结果对比,证明了该方法可显著提高月负荷预测的精度。 展开更多
关键词 月负荷预测 灰色关联度 最小二乘支持向量机 组合预测
下载PDF
基于改进蚁群算法优化参数的LSSVM短期负荷预测 被引量:39
17
作者 龙文 梁昔明 +1 位作者 龙祖强 李朝辉 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2011年第11期3408-3414,共7页
提出一种自动优选最小二乘支持向量机(LSSVM)模型参数的改进蚁群(MACO)算法。该算法将LSSVM模型的参数作为蚂蚁的位置向量,然后采用动态随机抽取的方法来确定目标个体引导蚁群进行全局搜索,同时在最优蚂蚁邻域内进行小步长局部搜索,找... 提出一种自动优选最小二乘支持向量机(LSSVM)模型参数的改进蚁群(MACO)算法。该算法将LSSVM模型的参数作为蚂蚁的位置向量,然后采用动态随机抽取的方法来确定目标个体引导蚁群进行全局搜索,同时在最优蚂蚁邻域内进行小步长局部搜索,找到模型的最优参数,得到基于MACO算法优化的LSSVM(MACO-LSSVM)预测模型。将优化后的LSSVM模型应用于短期电力负荷预测问题,选择湖南某地区日期为2009-08-01至2009-08-30各小时点的数据进行分析,对2009-08-31该日24 h的负荷进行预测,并与BP神经网络和SVM模型进行比较。研究结果表明:本文方法得到的均方根相对误差为1.71%,比用BP神经网络和SVM模型得到的均方根相对误差分别低1.61%和1.05%。 展开更多
关键词 最小二乘支持向量机 蚁群优化算法 参数优化 短期负荷预测
下载PDF
基于GA-LSSVM和近红外傅里叶变换的霉变板栗识别 被引量:34
18
作者 周竹 李小昱 +3 位作者 李培武 高云 展慧 刘洁 《农业工程学报》 EI CAS CSCD 北大核心 2011年第3期331-335,共5页
为克服板栗近红外光谱变量多、共线性强等缺点,该文对标准正态变量变换预处理后的板栗近红外光谱进行傅里叶变换,并用不同方法建模,提高识别精度。采用试探法提取近红外光谱傅里叶系数,建立了基于最小二乘支持向量机分类器的霉变板栗识... 为克服板栗近红外光谱变量多、共线性强等缺点,该文对标准正态变量变换预处理后的板栗近红外光谱进行傅里叶变换,并用不同方法建模,提高识别精度。采用试探法提取近红外光谱傅里叶系数,建立了基于最小二乘支持向量机分类器的霉变板栗识别模型。当提取前35点傅里叶系数时,板栗的平均识别正确率为93.56%;构造GA-LSSVM算法,建立的霉变板栗识别模型所用傅里叶系数减少为13点,对测试集中合格板栗、表面霉变板栗和内部霉变板栗的平均识别正确率分别为95.89%、100%和98.25%,板栗的总体平均识别正确率提高到97.54%。为霉变板栗的识别提供了快速鉴别分析方法。 展开更多
关键词 遗传算法(GA) 识别 傅里叶变换 板栗 近红外光谱 最小二乘支持向量机(lssvm)
下载PDF
基于最小二乘支持向量机和粒子群算法的两相流含油率软测量方法 被引量:34
19
作者 张春晓 张涛 《中国电机工程学报》 EI CSCD 北大核心 2010年第2期86-91,共6页
为提高油水两相流含油率的测量精度,提出基于最小二乘支持向量机(least squares support vector machine,LSSVM)和改进的粒子群算法(particle swarm optimization,PSO)的含油率建模方法。该方法将测量的油水总流量和加热器上下... 为提高油水两相流含油率的测量精度,提出基于最小二乘支持向量机(least squares support vector machine,LSSVM)和改进的粒子群算法(particle swarm optimization,PSO)的含油率建模方法。该方法将测量的油水总流量和加热器上下游温差作为LSSVM输入,含油率作为输出,对含油率与温差和总流量的关系进行训练,通过改进的PSO优化LSSVM的参数,建立了含油率的优化模型,并用测试数据对含油率的模型进行了比较。实验结果表明,基于改进的PSO-LSSVM含油率模型比PSO-LSSVM和遗传算法-最小二乘支持向量机模型运算速度快,比理论修正模型测量精度高,含油率在4%~60%时,平均测量误差为0.93%。 展开更多
关键词 热式油水两相流 含油率 铂电阻 最小二乘支持向量机 粒子群算法 遗传算法
下载PDF
基于IPSO-LSSVM的风电功率短期预测研究 被引量:28
20
作者 王贺 胡志坚 +2 位作者 张翌晖 张子泳 张承学 《电力系统保护与控制》 EI CSCD 北大核心 2012年第24期107-112,共6页
风电功率预测的关键是预测模型的选择和模型性能的优化。选择最小二乘支持向量机(least squares support vector machine,LSSVM)作为风电功率预测模型,使用改进的粒子群算法(improved particle swarm optimization algorithm,IPSO)对影... 风电功率预测的关键是预测模型的选择和模型性能的优化。选择最小二乘支持向量机(least squares support vector machine,LSSVM)作为风电功率预测模型,使用改进的粒子群算法(improved particle swarm optimization algorithm,IPSO)对影响最小二乘支持向量机回归性能的参数进行优化。在建立了改进的粒子群算法优化最小二乘支持向量机(LSSVM)的风电功率预测模型后,运用该模型对广西某风电场进行了仿真研究。为了对比研究,同时使用前馈(back propagation,BP)神经网络模型和支持向量机(support vector machine,SVM)模型进行了预测。最后采用多种误差指标对三种模型的预测结果进行综合分析。结果表明,使用改进的粒子群算法优化最小二乘向量机(IPSO-LSSVM)的风电功率预测模型具有较高的预测精度。 展开更多
关键词 风电功率预测 改进粒子群算法 最小二乘支持向量机 IPSO-lssvm 误差分析
下载PDF
上一页 1 2 18 下一页 到第
使用帮助 返回顶部